Context as Memory: Scene-Consistent Interactive Long Video Generation with Memory Retrieval
SIGGRAPH Asia 2025
File Structure
To prepare the dataset for use, merge the parts into a single zip file using the following command:
cat Context-as-Memory-Dataset_* > Context-as-Memory-Dataset.zip
After extracting Context-as-Memory-Dataset.zip, the dataset will be organized as follows:
Context-as-Memory-Dataset
├── frames
│ ├── AncientTempleEnv_0
│ │ ├── 0000.png
│ │ ├── 0001.png
│ │ ├── 0002.png
│ │ └── ...
│ ├── AncientTempleEnv_1
│ │ ├── 0000.png
│ │ ├── 0001.png
│ │ ├── 0002.png
│ │ └── ...
│ └── ...
│
├── jsons
│ ├── AncientTempleEnv_0.json
│ ├── AncientTempleEnv_1.json
│ └── ...
│
├── overlap_labels
│ ├── AncientTempleEnv_0
│ │ ├── 0.json
│ │ ├── 1.json
│ │ ├── 2.json
│ │ └── ...
│ ├── AncientTempleEnv_1
│ │ ├── 0.json
│ │ ├── 1.json
│ │ ├── 2.json
│ │ └── ...
│ └── ...
│
└── captions.txt
Explanation of Dataset Parts
frames/: 100 subdirectories, each containing 7,601 video frame images.jsons/: 100 JSON files, each storing the camera pose (position + rotation) of every frame in the corresponding long video.overlap_labels/: 100 subdirectories, each containing 7,601 JSON files, where each file records the indices of overlapping frames corresponding to that frame.captions.txt: Captions annotated for a segment of a long video, from a given starting frame to an ending frame.- We also provide a simple code file,
tools.py, which can convert (x, y, z, yaw, pitch) into RT, and can also select a specific frame as the reference frame to align the RT of other frames to its coordinate system.