Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
eu_debates / README.md
RJuro's picture
readmefix
79bcee9
metadata
license: cc-by-nc-sa-4.0
source_datasets:
  - coastalcph/eu_debates
language_creators:
  - found
multilinguality:
  - multilingual
language:
  - bg
  - cs
  - da
  - de
  - el
  - en
  - es
  - et
  - fi
  - fr
  - hr
  - hu
  - it
  - lt
  - lv
  - mt
  - nl
  - pl
  - pt
  - ro
  - sk
  - sl
  - sv
tags:
  - politics
size_categories:
  - 10K<n<100K
pretty_name: EU Debates (JSONL Conversion)

Dataset Description

This dataset is a conversion of the original coastalcph/eu_debates dataset released by Chalkidis and Brandl (2024).

The goal of this repository is to provide the same underlying data without a Python loading script, in a standard format (JSON Lines / Parquet) compatible with the current Hugging Face datasets library and automated data loading.

The original EU Debates corpus consists of approx. 87k individual speeches in the period 2009–2023. The data was exhaustively scraped from the official European Parliament Plenary website (link). All speeches are time-stamped, thematically organized in debates, and include metadata about:

  • the speaker's identity (full name, euro-party affiliation, speaker role),
  • the debate (date and title),
  • language information, and (where available) machine-translated versions in English.

Older debate speeches are originally in English, while newer ones are linguistically diverse across the 23 official EU languages. Machine-translated English versions are provided using the EasyNMT framework with the M2M-100 (418M) model (Fan et al., 2020).

This repository only changes the storage format (to train.jsonl / Parquet) and removes the Python loading script. The data contents and fields are preserved from the original dataset.

Data Fields

Each row / JSONL line is a single speech with the following fields:

  • speaker_name: string, full name of the speaker.
  • speaker_party: string, name of the euro-party (group) that the MEP is affiliated with.
  • speaker_role: string, role of the speaker (e.g., Member of the European Parliament (MEP), EUROPARL President).
  • debate_title: string, title of the debate in the European Parliament.
  • date: string, full date of the speech in YYYY-MM-DD format.
  • year: string, year of the speech in YYYY format.
  • intervention_language: string, language code of the original intervention.
  • original_language: string, language code of the original text.
  • text: string, full original speech of the speaker.
  • translated_text: string or null, machine translation of the speech into English if the original is not English, otherwise null.

Data Instances

Example of a data instance:

{
  "speaker_name": "Michèle Striffler",
  "speaker_party": "PPE",
  "speaker_role": "MEP",
  "debate_title": "Famine in East Africa (debate)",
  "date": "2011-09-15",
  "year": "2011",
  "intervention_language": "fr",
  "original_language": "fr",
  "text": "Monsieur le Président, Madame le Commissaire, chers collègues, la situation humanitaire sans précédent que connaît la Corne de l'Afrique continue [...]",
  "translated_text": "Mr. President, Mr. Commissioner, dear colleagues, the unprecedented humanitarian situation of the Horn of Africa continues [...]"
}

How to Use

From the Hugging Face Hub

If the dataset is hosted under RJuro/eu_debates:

from datasets import load_dataset

eu_debates = load_dataset("RJuro/eu_debates", split="train")

From Local Files

If you downloaded the train.jsonl file locally:

from datasets import load_dataset

eu_debates = load_dataset(
    "json",
    data_files={"train": "train.jsonl"},
    split="train",
)

If you use Parquet instead:

from datasets import load_dataset

eu_debates = load_dataset(
    "parquet",
    data_files={"train": "train.parquet"},
    split="train",
)

Dataset Statistics

The statistics below are inherited from the original coastalcph/eu_debates dataset.

Distribution of speeches across euro-parties:

Euro-party No. of Speeches
EPP 25,455 (29%)
S&D 20,042 (23%)
ALDE 8,946 (10%)
ECR 7,493 (9%)
ID 6,970 (8%)
GUE/NGL 6,780 (8%)
Greens/EFA 6,398 (7%)
NI 5,127 (6%)
Total 87,221

Distribution of speeches across years and euro-parties:

Year EPP S&D ALDE ECR ID GUE/NGL Greens/EFA NI Total
2009 748 456 180 138 72 174 113 163 2044
2010 3205 1623 616 340 341 529 427 546 7627
2011 4479 2509 817 418 761 792 490 614 10880
2012 3366 1892 583 419 560 486 351 347 8004
2013 724 636 240 175 152 155 170 154 2406
2014 578 555 184 180 131 160 144 180 2112
2015 978 1029 337 405 398 325 246 240 3958
2016 919 972 309 387 457 317 225 151 3737
2017 649 766 181 288 321 229 162 135 2731
2018 554 611 161 242 248 175 160 133 2284
2019 1296 1339 719 556 513 463 490 353 5729
2020 1660 1564 823 828 661 526 604 346 7012
2021 2147 2189 1290 1062 909 708 990 625 9920
2022 2436 2273 1466 1177 827 962 1031 641 10813
2023 1716 1628 1040 878 619 779 795 499 7954

Distribution of speeches across the 23 EU official languages:

Language No. of Speeches
en 40,736 (46.7%)
de 6,497 (7.5%)
fr 6,024 (6.9%)
es 5,172 (5.9%)
it 4,506 (5.2%)
pl 3,792 (4.4%)
pt 2,713 (3.1%)
ro 2,308 (2.7%)
el 2,290 (2.6%)
nl 2,286 (2.6%)
hu 1,661 (1.9%)
hr 1,509 (1.7%)
cs 1,428 (1.6%)
sv 1,210 (1.4%)
bg 928 (1.1%)
sk 916 (1.1%)
sl 753 (0.9%)
fi 693 (0.8%)
lt 618 (0.7%)
da 578 (0.7%)
et 342 (0.4%)
lv 184 (0.2%)
mt 0 (0.0%)

Citation Information

If you use this dataset, please cite the original work:

Llama meets EU: Investigating the European political spectrum through the lens of LLMs. Ilias Chalkidis and Stephanie Brandl. In the Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), Mexico City, Mexico, June 16–21, 2024.

@inproceedings{chalkidis-and-brandl-eu-llama-2024,
    title = "Llama meets EU: Investigating the European political spectrum through the lens of LLMs",
    author = "Chalkidis, Ilias  and Brandl, Stephanie",
    booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics",
    month = jun,
    year = "2024",
    address = "Mexico City, Mexico",
    publisher = "Association for Computational Linguistics",
}

This repository only provides a format-converted, script-free version of the original dataset; all credit for data collection and annotation goes to the original authors.