Contrastive Multiview Coding
Paper
β’
1906.05849
β’
Published
β’
1
image
imagewidth (px) 160
879
| label
class label 65
classes |
|---|---|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
|
0bonnet, poke bonnet
|
Streamlined PyTorch implementation for ImageNet-100 from parquet files. Efficient dataloaders for training and validation.
from scripts.pytorch_dataloader import ImageNet100Parquet
from torch.utils.data import DataLoader
from torchvision import transforms
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
train_dataset = ImageNet100Parquet("data", "train", transform)
val_dataset = ImageNet100Parquet("data", "validation", transform)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
for x, y in train_loader: # x: [batch, 3, 224, 224], y: [batch]
pass
python scripts/utils.py # Run all utilities
python scripts/utils.py debug # Debug structure only
python scripts/utils.py sizes # Check image sizes only
python scripts/utils.py memory # Analyze memory usage
from scripts.utils import debug_structure, check_image_sizes, analyze_memory_usage
debug_structure() # Inspect parquet structure
check_image_sizes(num_samples=20) # Analyze image dimensions
analyze_memory_usage(batch_size=32) # Memory usage analysis
Planned conversion to eliminate pandas dependency:
# Future usage (backlog item)
train_dataset = ImageNet100PT("data", "train") # Direct torch.load()
val_dataset = ImageNet100PT("data", "validation")
Parquet structure:
{
'image': {'bytes': b'\x89PNG...', 'path': None},
'label': 0 # Integer class label (0-99)
}
# Different image sizes
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
# Custom preprocessing
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
Original ImageNet license terms. Non-commercial research and educational use only.