Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
160
879
label
class label
65 classes
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
0bonnet, poke bonnet
End of preview. Expand in Data Studio

ImageNet-100 PyTorch Dataloader

Streamlined PyTorch implementation for ImageNet-100 from parquet files. Efficient dataloaders for training and validation.

πŸš€ Quick Start

from scripts.pytorch_dataloader import ImageNet100Parquet
from torch.utils.data import DataLoader
from torchvision import transforms

transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
])

train_dataset = ImageNet100Parquet("data", "train", transform)
val_dataset = ImageNet100Parquet("data", "validation", transform)

train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)

for x, y in train_loader:  # x: [batch, 3, 224, 224], y: [batch]
    pass

πŸ“Š Dataset Details

  • Classes: 100 ImageNet classes (balanced)
  • Training: 126,689 images
  • Validation: 5,000 images
  • Image sizes: Variable (standard output: 224Γ—224)

πŸ› οΈ Utilities

Data Inspection

python scripts/utils.py                    # Run all utilities
python scripts/utils.py debug              # Debug structure only
python scripts/utils.py sizes              # Check image sizes only
python scripts/utils.py memory             # Analyze memory usage

Programmatic Usage

from scripts.utils import debug_structure, check_image_sizes, analyze_memory_usage

debug_structure()                          # Inspect parquet structure
check_image_sizes(num_samples=20)          # Analyze image dimensions
analyze_memory_usage(batch_size=32)        # Memory usage analysis

🎯 Key Features

  • Efficient Loading: Direct parquet file reading with proper image decoding
  • Memory Optimized: Lazy loading with efficient tensor memory usage
  • Robust Error Handling: Comprehensive validation and error messages
  • Type Safe: Full type hints for better IDE support and debugging
  • Flexible Transforms: Easy to customize preprocessing pipeline
  • Data Inspection: Built-in utilities for dataset structure analysis
  • PyTorch Native: Seamless integration with PyTorch training workflows

πŸ”„ Future PT File Support

Planned conversion to eliminate pandas dependency:

# Future usage (backlog item)
train_dataset = ImageNet100PT("data", "train")  # Direct torch.load()
val_dataset = ImageNet100PT("data", "validation")

πŸ“ Data Format

Parquet structure:

{
    'image': {'bytes': b'\x89PNG...', 'path': None},
    'label': 0  # Integer class label (0-99)
}

πŸ”§ Configuration

# Different image sizes
transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor(),
])

# Custom preprocessing  
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                         std=[0.229, 0.224, 0.225])
])

πŸ“š Dataset Information

πŸ“„ License

Original ImageNet license terms. Non-commercial research and educational use only.

πŸ™ Acknowledgments

  • Original ImageNet team
  • πŸ€— Transformers (parquet format reference)
  • CMC paper (ImageNet-100 subset)
Downloads last month
53

Paper for basavyr/imagenet-100