merfish / merfish.py
cgeorgiaw's picture
cgeorgiaw HF Staff
trying yet again to make work for both streaming settings
c54d9d2
import datasets
import os
import pandas as pd
from huggingface_hub import list_repo_files
import glob
class MERFISHConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
self.gene_subset = kwargs.pop("gene_subset", None)
super().__init__(**kwargs)
class MERFISH(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
MERFISHConfig(name="raw", description="Raw MERFISH counts per gene"),
MERFISHConfig(name="processed", description="Processed MERFISH data"),
]
def _info(self):
return datasets.DatasetInfo(
description="MERFISH dataset of mouse brain slices",
features=datasets.Features({
"cell_identifier": datasets.Value("string"),
"expression": datasets.Sequence(datasets.Value("float32")),
"gene_names": datasets.Sequence(datasets.Value("string")),
}),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
expression_prefix = f"{self.config.name}/expression"
repo_id = "data4science/merfish"
if dl_manager.is_streaming:
data_files = {
"expression": os.path.join(self.config.name, "expression", "*.parquet"),
"gene_metadata": os.path.join(self.config.name, "gene_metadata.parquet"),
"cell_metadata": os.path.join(self.config.name, "cell_metadata.parquet"),
}
downloaded = dl_manager.download(data_files)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"expression_files": sorted(glob.glob(downloaded["expression"])),
"gene_metadata_path": downloaded["gene_metadata"],
"cell_metadata_path": downloaded["cell_metadata"],
},
),
]
else:
# List exact files from the Hub
all_files = list_repo_files(repo_id, repo_type="dataset")
expression_files = [
f for f in all_files
if f.startswith(expression_prefix) and f.endswith(".parquet")
]
expression_files = dl_manager.download(expression_files)
gene_metadata = dl_manager.download(f"{self.config.name}/gene_metadata.parquet")
cell_metadata = dl_manager.download(f"{self.config.name}/cell_metadata.parquet")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"expression_files": expression_files,
"gene_metadata_path": gene_metadata,
"cell_metadata_path": cell_metadata,
"fs": dl_manager.fs if dl_manager.is_streaming else None,
},
),
]
def _generate_examples(self, expression_files, gene_metadata_path, cell_metadata_path, fs=None):
if fs is not None:
gene_df = pd.read_parquet(fs.open(gene_metadata_path, "rb"))
cell_df = pd.read_parquet(fs.open(cell_metadata_path, "rb"))
else:
gene_df = pd.read_parquet(gene_metadata_path)
cell_df = pd.read_parquet(cell_metadata_path)
gene_names = gene_df["gene_identifier"].tolist() if "gene_identifier" in gene_df.columns else gene_df.index.tolist()
idx = 0
for filepath in expression_files:
if fs is not None:
with fs.open(filepath, "rb") as f:
df = pd.read_parquet(f)
else:
df = pd.read_parquet(filepath)
for idx_row, row in df.iterrows():
yield idx, {
"cell_identifier": str(idx_row),
"expression": row.to_numpy(dtype="float32").tolist(),
"gene_names": gene_names,
}
idx += 1