Custom Word2Vec Embeddings

This model contains custom word embeddings trained using Gensim's Word2Vec implementation.

Model details

  • Trained using Gensim's Word2Vec
  • Includes custom n-grams as tokens
  • Vector size: 100
  • Context window: 5
  • Training algorithm: Skip-gram

Usage

from transformers import AutoTokenizer, AutoModel
import torch

# Load model directly
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name")
model = AutoModel.from_pretrained("your-username/your-model-name")

# Or load from the hub using gensim:
from gensim.models import KeyedVectors
import gensim.downloader as api

# Load vectors directly using gensim
word_vectors = api.load("your-username/your-model-name")
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support