samsum_42

This model is a fine-tuned version of google/t5-v1_1-base on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7890
  • Rouge1: 40.3856
  • Rouge2: 20.2717
  • Rougel: 35.4629
  • Rougelsum: 37.3525
  • Gen Len: 11.9010
  • Test Rougel: 35.4629
  • Df Rougel: 35.4391
  • Unlearn Overall Rougel: 0.5119
  • Unlearn Time: 413.9972

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Overall Rougel Unlearn Overall Rougel Time
No log 1.0 19 1.5087 48.165 24.0364 41.5145 44.5273 20.0330 0.0250 0.0250 -1
No log 2.0 38 1.5518 45.1367 22.6241 39.4987 41.5893 15.9988 0.1158 0.1158 -1
No log 3.0 57 1.6497 42.676 21.8348 37.1472 39.346 13.2311 0.5080 0.5080 -1
No log 4.0 76 1.7476 40.7242 20.605 35.8234 37.7693 12.0526 0.5084 0.5084 -1
No log 5.0 95 1.7890 40.3856 20.2717 35.4391 37.3525 11.9010 0.5119 0.5119 -1

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jialicheng/unlearn_samsum_t5-base_neggrad_4_42

Finetuned
(54)
this model

Evaluation results