distilbert-finetuned-squadv2
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5319
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.3945 | 0.4998 | 2741 | 1.3654 |
| 1.2187 | 0.9996 | 5482 | 1.2518 |
| 0.9937 | 1.4995 | 8223 | 1.2515 |
| 0.8966 | 1.9993 | 10964 | 1.2321 |
| 0.7284 | 2.4991 | 13705 | 1.3200 |
| 0.7586 | 2.9989 | 16446 | 1.2978 |
| 0.5655 | 3.4987 | 19187 | 1.4298 |
| 0.567 | 3.9985 | 21928 | 1.4508 |
| 0.479 | 4.4984 | 24669 | 1.4952 |
| 0.4874 | 4.9982 | 27410 | 1.5319 |
Framework versions
- Transformers 4.57.6
- Pytorch 2.9.0+cu126
- Datasets 2.16.1
- Tokenizers 0.22.2
- Downloads last month
- 77
Model tree for nhutan410/distilbert-finetuned-squadv2
Base model
distilbert/distilbert-base-uncased