library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-segmentation
FFNet-78S: Optimized for Mobile Deployment
Semantic segmentation for automotive street scenes
FFNet-78S is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
This model is an implementation of FFNet-78S found here.
This repository provides scripts to run FFNet-78S on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.semantic_segmentation
- Model Stats:
- Model checkpoint: ffnet78S_dBBB_cityscapes_state_dict_quarts
- Input resolution: 2048x1024
- Number of output classes: 19
- Number of parameters: 27.5M
- Model size (float): 105 MB
- Model size (w8a8): 26.7 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| FFNet-78S | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 200.039 ms | 2 - 83 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 182.656 ms | 24 - 91 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 67.447 ms | 2 - 133 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 77.842 ms | 24 - 89 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 51.234 ms | 2 - 20 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 40.861 ms | 24 - 45 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 34.196 ms | 0 - 106 MB | NPU | FFNet-78S.onnx.zip |
| FFNet-78S | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 70.051 ms | 2 - 82 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 58.548 ms | 24 - 90 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 200.039 ms | 2 - 83 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 182.656 ms | 24 - 91 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 51.006 ms | 2 - 20 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 40.502 ms | 24 - 50 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 76.502 ms | 2 - 81 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 63.63 ms | 24 - 89 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 51.018 ms | 2 - 23 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 40.681 ms | 24 - 45 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 70.051 ms | 2 - 82 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 58.548 ms | 24 - 90 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 33.979 ms | 2 - 131 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 28.274 ms | 24 - 91 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 24.191 ms | 25 - 112 MB | NPU | FFNet-78S.onnx.zip |
| FFNet-78S | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 27.312 ms | 1 - 84 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 21.2 ms | 23 - 105 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 28.974 ms | 7 - 72 MB | NPU | FFNet-78S.onnx.zip |
| FFNet-78S | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 22.457 ms | 1 - 84 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 15.777 ms | 24 - 113 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 13.472 ms | 30 - 134 MB | NPU | FFNet-78S.onnx.zip |
| FFNet-78S | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 41.752 ms | 37 - 37 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 33.978 ms | 31 - 31 MB | NPU | FFNet-78S.onnx.zip |
| FFNet-78S | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | TFLITE | 51.218 ms | 1 - 36 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | QNN_DLC | 84.569 ms | 6 - 289 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | ONNX | 487.386 ms | 162 - 230 MB | CPU | FFNet-78S.onnx.zip |
| FFNet-78S | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 29.589 ms | 1 - 56 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 39.501 ms | 6 - 77 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 12.042 ms | 1 - 84 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 20.857 ms | 6 - 99 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 10.667 ms | 1 - 14 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 17.047 ms | 6 - 27 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 11.655 ms | 0 - 75 MB | NPU | FFNet-78S.onnx.zip |
| FFNet-78S | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 11.306 ms | 1 - 56 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 17.375 ms | 6 - 77 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 338.654 ms | 1 - 3 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 504.264 ms | 158 - 191 MB | CPU | FFNet-78S.onnx.zip |
| FFNet-78S | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 29.589 ms | 1 - 56 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 39.501 ms | 6 - 77 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 10.695 ms | 1 - 12 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 17.122 ms | 6 - 25 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 16.843 ms | 1 - 59 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 23.571 ms | 6 - 80 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 10.697 ms | 1 - 12 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 16.977 ms | 6 - 26 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 11.306 ms | 1 - 56 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 17.375 ms | 6 - 77 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 7.654 ms | 1 - 79 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 11.805 ms | 6 - 100 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 7.982 ms | 6 - 91 MB | NPU | FFNet-78S.onnx.zip |
| FFNet-78S | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 6.199 ms | 1 - 61 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 7.96 ms | 6 - 87 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 6.173 ms | 1 - 71 MB | NPU | FFNet-78S.onnx.zip |
| FFNet-78S | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 16.656 ms | 0 - 76 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 22.082 ms | 6 - 99 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 531.424 ms | 147 - 164 MB | CPU | FFNet-78S.onnx.zip |
| FFNet-78S | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 5.406 ms | 1 - 61 MB | NPU | FFNet-78S.tflite |
| FFNet-78S | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 5.892 ms | 6 - 101 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 4.516 ms | 7 - 83 MB | NPU | FFNet-78S.onnx.zip |
| FFNet-78S | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 17.759 ms | 115 - 115 MB | NPU | FFNet-78S.dlc |
| FFNet-78S | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 12.165 ms | 22 - 22 MB | NPU | FFNet-78S.onnx.zip |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[ffnet-78s]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.ffnet_78s.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ffnet_78s.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.ffnet_78s.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.ffnet_78s import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.ffnet_78s.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ffnet_78s.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on FFNet-78S's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of FFNet-78S can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
