SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("s2593817/sft-sql-embedding")
# Run inference
sentences = [
'SELECT alias1.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3 WHERE alias3.col4 = str INTERSECT SELECT alias1.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3 WHERE alias3.col4 = str',
'SELECT count(col1) FROM table1 WHERE col2 = num',
'SELECT count(DISTINCT col1) FROM table1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 300,000 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 38.49 tokens
- max: 189 tokens
- min: 7 tokens
- mean: 37.44 tokens
- max: 153 tokens
- min: 0.04
- mean: 0.36
- max: 1.0
- Samples:
sentence1 sentence2 score SELECT DISTINCT count(DISTINCT alias4.col1) , alias3.col2 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col3 = alias2.col3 JOIN table3 AS alias3 ON alias3.col4 = alias1.col4 JOIN table4 AS alias4 ON alias3.col4 = alias4.col5 WHERE alias2.col6 = str GROUP BY alias3.col2 ORDER BY count(DISTINCT alias4.col1) DESCSELECT count(*) FROM table1 WHERE col1 = str0.14221014492753623SELECT DISTINCT count(alias2.col1) FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 WHERE alias1.col3 = strSELECT alias3.col1 FROM table1 AS alias1 JOIN table2 AS alias2 ON alias1.col2 = alias2.col2 JOIN table3 AS alias3 ON alias2.col3 = alias3.col3 WHERE alias1.col4 = str AND alias1.col5 = str0.5468686868686868SELECT count(*) FROM table1SELECT count(*) FROM table1 WHERE col1 LIKE str0.6269230769230769 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 160learning_rate: 2e-05num_train_epochs: 8warmup_ratio: 0.2fp16: Truedataloader_num_workers: 16batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 160per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 8max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.2warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 16dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0533 | 100 | 12.0379 |
| 0.1067 | 200 | 9.2042 |
| 0.16 | 300 | 8.6521 |
| 0.2133 | 400 | 8.5353 |
| 0.2667 | 500 | 8.4472 |
| 0.32 | 600 | 8.4105 |
| 0.3733 | 700 | 8.3927 |
| 0.4267 | 800 | 8.3553 |
| 0.48 | 900 | 8.3326 |
| 0.5333 | 1000 | 8.3168 |
| 0.5867 | 1100 | 8.2941 |
| 0.64 | 1200 | 6.0021 |
| 0.6933 | 1300 | 5.3802 |
| 0.7467 | 1400 | 5.3282 |
| 0.8 | 1500 | 5.2365 |
| 0.8533 | 1600 | 5.0198 |
| 0.9067 | 1700 | 4.899 |
| 0.96 | 1800 | 4.8887 |
| 1.0133 | 1900 | 4.7603 |
| 1.0667 | 2000 | 4.6292 |
| 1.12 | 2100 | 4.4811 |
| 1.1733 | 2200 | 4.2841 |
| 1.2267 | 2300 | 4.2251 |
| 1.28 | 2400 | 4.0261 |
| 1.3333 | 2500 | 3.8628 |
| 1.3867 | 2600 | 3.8404 |
| 1.44 | 2700 | 3.6471 |
| 1.4933 | 2800 | 3.6673 |
| 1.5467 | 2900 | 3.5626 |
| 1.6 | 3000 | 3.5391 |
| 1.6533 | 3100 | 3.5629 |
| 1.7067 | 3200 | 3.4787 |
| 1.76 | 3300 | 3.4401 |
| 1.8133 | 3400 | 3.491 |
| 1.8667 | 3500 | 3.3358 |
| 1.92 | 3600 | 3.3555 |
| 1.9733 | 3700 | 3.161 |
| 2.0267 | 3800 | 3.1708 |
| 2.08 | 3900 | 3.1678 |
| 2.1333 | 4000 | 3.1348 |
| 2.1867 | 4100 | 2.9159 |
| 2.24 | 4200 | 2.8359 |
| 2.2933 | 4300 | 2.8359 |
| 2.3467 | 4400 | 2.796 |
| 2.4 | 4500 | 2.8483 |
| 2.4533 | 4600 | 2.7774 |
| 2.5067 | 4700 | 2.7766 |
| 2.56 | 4800 | 2.7185 |
| 2.6133 | 4900 | 2.778 |
| 2.6667 | 5000 | 2.7114 |
| 2.72 | 5100 | 2.6623 |
| 2.7733 | 5200 | 2.5093 |
| 2.8267 | 5300 | 2.4835 |
| 2.88 | 5400 | 2.2851 |
| 2.9333 | 5500 | 2.1488 |
| 2.9867 | 5600 | 2.2175 |
| 3.04 | 5700 | 2.0813 |
| 3.0933 | 5800 | 2.1489 |
| 3.1467 | 5900 | 2.1337 |
| 3.2 | 6000 | 2.2258 |
| 3.2533 | 6100 | 2.1601 |
| 3.3067 | 6200 | 1.9266 |
| 3.36 | 6300 | 1.8427 |
| 3.4133 | 6400 | 1.8434 |
| 3.4667 | 6500 | 1.917 |
| 3.52 | 6600 | 1.8204 |
| 3.5733 | 6700 | 2.0209 |
| 3.6267 | 6800 | 1.7852 |
| 3.68 | 6900 | 1.9566 |
| 3.7333 | 7000 | 1.852 |
| 3.7867 | 7100 | 1.8562 |
| 3.84 | 7200 | 1.7595 |
| 3.8933 | 7300 | 1.4295 |
| 3.9467 | 7400 | 1.2669 |
| 4.0 | 7500 | 1.2029 |
| 4.0533 | 7600 | 1.3074 |
| 4.1067 | 7700 | 1.435 |
| 4.16 | 7800 | 1.5712 |
| 4.2133 | 7900 | 1.2366 |
| 4.2667 | 8000 | 1.526 |
| 4.32 | 8100 | 1.2565 |
| 4.3733 | 8200 | 1.4546 |
| 4.4267 | 8300 | 1.374 |
| 4.48 | 8400 | 1.3387 |
| 4.5333 | 8500 | 1.3776 |
| 4.5867 | 8600 | 1.3984 |
| 4.64 | 8700 | 1.3577 |
| 4.6933 | 8800 | 1.2393 |
| 4.7467 | 8900 | 1.4125 |
| 4.8 | 9000 | 1.6127 |
| 4.8533 | 9100 | 1.6897 |
| 4.9067 | 9200 | 1.1217 |
| 4.96 | 9300 | 1.406 |
| 5.0133 | 9400 | 1.4641 |
| 5.0667 | 9500 | 1.48 |
| 5.12 | 9600 | 1.3367 |
| 5.1733 | 9700 | 1.4681 |
| 5.2267 | 9800 | 1.4628 |
| 5.28 | 9900 | 1.32 |
| 5.3333 | 10000 | 1.448 |
| 5.3867 | 10100 | 1.2516 |
| 5.44 | 10200 | 1.4421 |
| 5.4933 | 10300 | 1.2542 |
| 5.5467 | 10400 | 1.4545 |
| 5.6 | 10500 | 1.1441 |
| 5.6533 | 10600 | 1.251 |
| 5.7067 | 10700 | 1.3396 |
| 5.76 | 10800 | 1.0305 |
| 5.8133 | 10900 | 1.0155 |
| 5.8667 | 11000 | 0.9871 |
| 5.92 | 11100 | 1.074 |
| 5.9733 | 11200 | 0.4534 |
| 6.0267 | 11300 | 0.1965 |
| 6.08 | 11400 | 0.1822 |
| 6.1333 | 11500 | 0.2101 |
| 6.1867 | 11600 | 0.2326 |
| 6.24 | 11700 | 0.4126 |
| 6.2933 | 11800 | 0.4871 |
| 6.3467 | 11900 | 0.2012 |
| 6.4 | 12000 | 0.2113 |
| 6.4533 | 12100 | 0.1788 |
| 6.5067 | 12200 | 0.2271 |
| 6.56 | 12300 | 0.1685 |
| 6.6133 | 12400 | 0.3347 |
| 6.6667 | 12500 | 0.123 |
| 6.72 | 12600 | 0.155 |
| 6.7733 | 12700 | 0.2476 |
| 6.8267 | 12800 | 0.1926 |
| 6.88 | 12900 | 0.1394 |
| 6.9333 | 13000 | 0.1683 |
| 6.9867 | 13100 | 0.2484 |
| 7.04 | 13200 | 0.1338 |
| 7.0933 | 13300 | 0.1568 |
| 7.1467 | 13400 | 0.1206 |
| 7.2 | 13500 | 0.1683 |
| 7.2533 | 13600 | 0.1831 |
| 7.3067 | 13700 | 0.3077 |
| 7.36 | 13800 | 0.3533 |
| 7.4133 | 13900 | 0.1165 |
| 7.4667 | 14000 | 0.2128 |
| 7.52 | 14100 | 0.236 |
| 7.5733 | 14200 | 0.3616 |
| 7.6267 | 14300 | 0.2989 |
| 7.68 | 14400 | 0.2416 |
| 7.7333 | 14500 | 0.2105 |
| 7.7867 | 14600 | 0.1575 |
| 7.84 | 14700 | 0.224 |
| 7.8933 | 14800 | 0.1593 |
| 7.9467 | 14900 | 0.1293 |
| 8.0 | 15000 | 0.0985 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 13,759
Model tree for s2593817/sft-sql-embedding
Base model
sentence-transformers/all-mpnet-base-v2