See axolotl config
axolotl version: 0.13.0.dev0
base_model: google/gemma-3-270m-it
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: skomadinajs/gemma-3-270m-it-emoji
# gemma3 doesn't seem to play nice with ddp
ddp_find_unused_parameters: true
load_in_8bit: false
load_in_4bit: true
# huggingface repo
chat_template: gemma3
eot_tokens:
- <end_of_turn>
datasets:
- path: kr15t3n/text2emoji
type:
system_prompt: "Translate this text to emoji:"
field_instruction: text
field_output: emoji
val_set_size: 0.1
output_dir: /workspace-data/output
adapter: qlora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
sequence_len: 256
sample_packing: false
eval_sample_packing: false
wandb_project: gemma-3-270m-qlora-002
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: constant
learning_rate: 0.00005
bf16: auto
tf32: true
gradient_checkpointing: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.0
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.01
special_tokens:
gemma-3-270m-it-emoji
This model is a fine-tuned version of google/gemma-3-270m-it on the kr15t3n/text2emoji dataset. It achieves the following results on the evaluation set:
- Loss: 2.3954
- Memory/max Active (gib): 1.05
- Memory/max Allocated (gib): 1.05
- Memory/device Reserved (gib): 1.47
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 51
- training_steps: 1707
Training results
| Training Loss | Epoch | Step | Validation Loss | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 8.3493 | 1.02 | 1.02 | 1.57 |
| 2.9462 | 1.0 | 569 | 2.5616 | 1.05 | 1.05 | 1.53 |
| 2.2067 | 2.0 | 1138 | 2.4661 | 1.05 | 1.05 | 1.47 |
| 1.9333 | 3.0 | 1707 | 2.3954 | 1.05 | 1.05 | 1.47 |
Framework versions
- PEFT 0.17.1
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 5