Spaces:
Running
Running
File size: 12,722 Bytes
c652250 76c29f8 c652250 76c29f8 44e7908 76c29f8 44e7908 76c29f8 c652250 76c29f8 c652250 3e0bb46 c652250 6cb8e5b 76c29f8 6cb8e5b 76c29f8 6cb8e5b 76c29f8 6cb8e5b 76c29f8 6cb8e5b 76c29f8 6cb8e5b 76c29f8 6cb8e5b 76c29f8 6cb8e5b 76c29f8 6cb8e5b 76c29f8 3e0bb46 6cb8e5b 76c29f8 3e0bb46 76c29f8 3e0bb46 76c29f8 6cb8e5b 76c29f8 44e7908 76c29f8 44e7908 76c29f8 44e7908 76c29f8 44e7908 76c29f8 5b46cf5 44e7908 5b46cf5 76c29f8 44e7908 6cb8e5b 44e7908 6cb8e5b 44e7908 6cb8e5b 44e7908 76c29f8 44e7908 76c29f8 44e7908 76c29f8 44e7908 76c29f8 44e7908 76c29f8 332bdfe 44e7908 0ccf447 44e7908 0ccf447 44e7908 332bdfe 44e7908 332bdfe 44e7908 332bdfe 76c29f8 44e7908 332bdfe 44e7908 332bdfe 76c29f8 0ccf447 44e7908 76c29f8 44e7908 76c29f8 44e7908 332bdfe 44e7908 332bdfe 76c29f8 44e7908 332bdfe 44e7908 332bdfe 44e7908 76c29f8 332bdfe 76c29f8 44e7908 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os
import time
from pathlib import Path
from typing import List, Tuple, Dict
import numpy as np
import pandas as pd
import gradio as gr
OUTDIR = Path("outputs")
OUTDIR.mkdir(parents=True, exist_ok=True)
def slug(s: str) -> str:
"""Make a safe filename slug (ASCII, underscores)."""
if s is None:
s = ""
return "".join(c if c.isalnum() else "_" for c in s)[:80].strip("_")
def save_wav(path: Path, sr: int, audio):
import numpy as np
from scipy.io import wavfile as wav
if hasattr(audio, "detach"):
audio = audio.detach().cpu().numpy()
a = np.array(audio).astype(np.float32)
a = np.squeeze(a)
if a.ndim == 2 and a.shape[0] < a.shape[1]:
a = a.T
# normalize if needed (safety)
max_abs = np.max(np.abs(a)) if a.size else 1.0
if np.isfinite(max_abs) and max_abs > 1.0:
a = a / max_abs
wav.write(str(path), int(sr), a)
MODEL_NAMES = {
"suno/bark-small": "bark",
"facebook/mms-tts-rus": "mms",
"facebook/seamless-m4t-v2-large": "seamless",
}
_model_cache: Dict[str, object] = {}
_device_hint = "auto"
def _load_bark():
import torch
from transformers import pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="text-to-speech",
model="suno/bark-small",
device=device,
model_kwargs={"low_cpu_mem_usage": False, "torch_dtype": torch.float32}
)
if getattr(pipe.model.config, "pad_token_id", None) is None:
pipe.model.config.pad_token_id = pipe.model.config.eos_token_id
def generate(text: str):
out = pipe(text)
return int(out["sampling_rate"]), np.asarray(out["audio"], dtype=np.float32)
return generate
def _load_mms():
import torch
from transformers import pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline(
"text-to-speech",
model="facebook/mms-tts-rus",
device=device,
model_kwargs={"low_cpu_mem_usage": False, "torch_dtype": torch.float32}
)
if getattr(pipe.model.config, "pad_token_id", None) is None:
pipe.model.config.pad_token_id = pipe.model.config.eos_token_id
def generate(text: str):
out = pipe(text)
return int(out["sampling_rate"]), np.asarray(out["audio"], dtype=np.float32)
return generate
def _load_seamless():
import torch
import numpy as np
from transformers import AutoProcessor
from transformers.models.seamless_m4t_v2.modeling_seamless_m4t_v2 import SeamlessM4Tv2Model
device = "cuda" if torch.cuda.is_available() else "cpu"
proc = AutoProcessor.from_pretrained(
"facebook/seamless-m4t-v2-large",
use_fast=False
)
model = SeamlessM4Tv2Model.from_pretrained(
"facebook/seamless-m4t-v2-large",
low_cpu_mem_usage=False
).to(device)
def generate(text: str):
inputs = proc(text=text, src_lang="rus", return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
audio = model.generate(**inputs, tgt_lang="rus")[0]
audio = audio.detach().cpu().numpy().squeeze().astype(np.float32)
return 16000, audio
return generate
def get_generator(kind: str):
if kind in _model_cache:
return _model_cache[kind]
if kind == "bark":
gen = _load_bark()
elif kind == "mms":
gen = _load_mms()
elif kind == "seamless":
gen = _load_seamless()
else:
raise ValueError(f"Unknown model kind: {kind}")
_model_cache[kind] = gen
return gen
DEFAULT_PROMPTS = (
"Привет! Это короткий тест русского TTS.\n"
"Сегодня мы проверяем интонации, паузы и четкость дикции.\n"
"Немного сложнее: числа 3.14 и 2025 читаем правильно."
)
def run_tts(
prompts_text: str,
split_lines: bool,
model_choice: str,
):
"""Main Gradio callback: TTS.
Returns:
files: list[str] — пути к wav
df: pd.DataFrame — таблица метаданных
last_audio: str | None — путь к последнему файлу для предпросмотра
"""
text_items: List[str] = []
if split_lines:
for line in [s.strip() for s in prompts_text.splitlines()]:
if line:
text_items.append(line)
else:
text_items = [prompts_text.strip()] if prompts_text.strip() else []
if not text_items:
return [], pd.DataFrame(), None
kind = MODEL_NAMES[model_choice]
gen = get_generator(kind)
stamp_dir = OUTDIR / "tts" / time.strftime("%Y%m%d-%H%M%S")
stamp_dir.mkdir(parents=True, exist_ok=True)
rows = []
file_paths: List[str] = []
last_audio_path = None
for p in text_items:
t0 = time.time()
sr, audio = gen(p)
dt = time.time() - t0
path = stamp_dir / f"{slug(model_choice)}__{slug(p)}.wav"
save_wav(path, sr, audio)
rows.append({
"task": "tts",
"model": model_choice,
"prompt": p,
"file": str(path),
"sr": sr,
"gen_time_s": round(dt, 3),
})
file_paths.append(str(path))
last_audio_path = str(path)
df = pd.DataFrame(rows)
return file_paths, df, last_audio_path
_music_pipes: Dict[str, object] = {}
MUSIC_MODELS = [
"facebook/musicgen-small",
]
def get_music_pipe(model_name: str):
import torch
from transformers import pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline(
"text-to-audio",
model=model_name,
device=device,
model_kwargs={"low_cpu_mem_usage": False, "torch_dtype": torch.float32}
)
return pipe
MUSIC_DEFAULT_PROMPTS = (
"High-energy 90s rock track with distorted electric guitars, driving bass, and hard-hitting acoustic drums\n"
"Modern electronic dance track with punchy kick, bright synth lead, and sidechained pads, 128 BPM\n"
"Dark industrial electro with gritty bass, sharp snares, and mechanical percussion"
)
def run_music(
prompts_text: str,
split_lines: bool,
model_name: str,
do_sample: bool,
):
"""Main Gradio callback: MusicGen."""
text_items: List[str] = []
if split_lines:
for line in [s.strip() for s in prompts_text.splitlines()]:
if line:
text_items.append(line)
else:
text_items = [prompts_text.strip()] if prompts_text.strip() else []
if not text_items:
return [], pd.DataFrame(), None
pipe = get_music_pipe(model_name)
stamp_dir = OUTDIR / "music" / slug(model_name) / time.strftime("%Y%m%d-%H%M%S")
stamp_dir.mkdir(parents=True, exist_ok=True)
rows = []
file_paths: List[str] = []
last_audio_path = None
for p in text_items:
t0 = time.time()
out = pipe(p, forward_params={"do_sample": bool(do_sample)})
dt = time.time() - t0
sr = int(out["sampling_rate"])
audio = np.asarray(out["audio"], dtype=np.float32)
path = stamp_dir / f"{slug(p)}.wav"
save_wav(path, sr, audio)
rows.append({
"task": "music",
"model": model_name,
"prompt": p,
"file": str(path),
"sr": sr,
"gen_time_s": round(dt, 3),
})
file_paths.append(str(path))
last_audio_path = str(path)
df = pd.DataFrame(rows)
return file_paths, df, last_audio_path
tts_description_md = (
"""
Russian TTS Bench: выберите модель и введите один или несколько промптов.\
По умолчанию каждая строка — отдельный промпт. Результаты сохраняются в `outputs/tts/…`.
**Модели:**
- `suno/bark-small` — небольшой мультиязычный TTS.
- `facebook/mms-tts-rus` — русская TTS из проекта MMS.
- `facebook/seamless-m4t-v2-large` — крупная модель перевода/говорения; тяжёлая для CPU.
"""
)
music_description_md = (
"""
**Music Gen:** текст → музыка на базе MusicGen. По умолчанию каждая строка — отдельный промпт.\
Результаты сохраняются в `outputs/music/<model>/…`.
**Модели:**
- `facebook/musicgen-small`
- (опционально) `facebook/musicgen-stereo-small` — раскомментируйте в коде.
"""
)
def run_tts_ui(prompts_text, split_lines, model_choice):
files, _, last = run_tts(prompts_text, split_lines, model_choice)
samples_update = gr.update(choices=files, value=(last or (files[-1] if files else None)))
return files, (last or None), samples_update
def run_music_ui(prompts_text, split_lines, model_name, do_sample):
files, _, last = run_music(prompts_text, split_lines, model_name, do_sample)
samples_update = gr.update(choices=files, value=(last or (files[-1] if files else None)))
return files, (last or None), samples_update
with gr.Blocks(title="Speech & Music Bench") as demo:
gr.Markdown("#Speech & Music Bench")
with gr.Tab("TTS"):
gr.Markdown(tts_description_md)
with gr.Row():
model_choice = gr.Dropdown(
label="Модель TTS",
choices=list(MODEL_NAMES.keys()),
value="suno/bark-small",
)
split_lines_tts = gr.Checkbox(value=True, label="Одна строка = один промпт")
prompts_tts = gr.Textbox(
label="Промпты",
value=DEFAULT_PROMPTS,
lines=6,
placeholder="Каждая строка — отдельный промпт…",
)
run_btn_tts = gr.Button("Сгенерировать речь", variant="primary")
with gr.Row():
files_tts = gr.Files(label="Файлы .wav для скачивания")
with gr.Row():
samples_tts = gr.Dropdown(
label="Все сгенерённые семплы (выберите для прослушивания)",
choices=[],
allow_custom_value=False
)
with gr.Row():
preview_tts = gr.Audio(label="Предпросмотр выбранного семпла", autoplay=False)
run_btn_tts.click(
fn=run_tts_ui,
inputs=[prompts_tts, split_lines_tts, model_choice],
outputs=[files_tts, preview_tts, samples_tts],
)
samples_tts.change(
fn=lambda p: gr.update(value=p),
inputs=samples_tts,
outputs=preview_tts,
)
with gr.Tab("Music"):
gr.Markdown(music_description_md)
with gr.Row():
music_model = gr.Dropdown(
label="Модель MusicGen",
choices=MUSIC_MODELS,
value=MUSIC_MODELS[0],
)
split_lines_music = gr.Checkbox(value=True, label="Одна строка = один промпт")
do_sample = gr.Checkbox(value=True, label="do_sample")
prompts_music = gr.Textbox(
label="Музыкальные промпты",
value=MUSIC_DEFAULT_PROMPTS,
lines=6,
placeholder="Каждая строка — отдельный промпт…",
)
run_btn_music = gr.Button("Сгенерировать музыку", variant="primary")
with gr.Row():
files_music = gr.Files(label="Файлы .wav для скачивания")
with gr.Row():
samples_music = gr.Dropdown(
label="Все сгенерённые треки (выберите для прослушивания)",
choices=[],
allow_custom_value=False
)
with gr.Row():
preview_music = gr.Audio(label="Предпросмотр выбранного трека", autoplay=False)
run_btn_music.click(
fn=run_music_ui,
inputs=[prompts_music, split_lines_music, music_model, do_sample],
outputs=[files_music, preview_music, samples_music],
)
samples_music.change(
fn=lambda p: gr.update(value=p),
inputs=samples_music,
outputs=preview_music,
)
if __name__ == "__main__":
demo.launch()
|