PIWM / src /data /utils.py
musictimer's picture
Initial Diamond CSGO AI deployment
c64c726
raw
history blame
3.48 kB
import math
from typing import Generator, List
import torch
import torch.nn.functional as F
from .batch import Batch
from .episode import Episode
from .segment import Segment, SegmentId
def collate_segments_to_batch(segments: List[Segment]) -> Batch:
attrs = ("obs", "act", "rew", "end", "trunc", "mask_padding")
stack = (torch.stack([getattr(s, x) for s in segments]) for x in attrs)
return Batch(*stack, [s.info for s in segments], [s.id for s in segments])
def make_segment(episode: Episode, segment_id: SegmentId, should_pad: bool = True) -> Segment:
assert segment_id.start < len(episode) and segment_id.stop > 0 and segment_id.start < segment_id.stop
pad_len_right = max(0, segment_id.stop - len(episode))
pad_len_left = max(0, -segment_id.start)
assert pad_len_right == pad_len_left == 0 or should_pad
def pad(x):
right = F.pad(x, [0 for _ in range(2 * x.ndim - 1)] + [pad_len_right]) if pad_len_right > 0 else x
return F.pad(right, [0 for _ in range(2 * x.ndim - 2)] + [pad_len_left, 0]) if pad_len_left > 0 else right
start = max(0, segment_id.start)
stop = min(len(episode), segment_id.stop)
mask_padding = torch.cat((torch.zeros(pad_len_left), torch.ones(stop - start), torch.zeros(pad_len_right))).bool()
return Segment(
pad(episode.obs[start:stop]),
pad(episode.act[start:stop]),
pad(episode.rew[start:stop]),
pad(episode.end[start:stop]),
pad(episode.trunc[start:stop]),
mask_padding,
pad(episode.states[start:stop]),
pad(episode.ego_state[start:stop]),
info=episode.info,
id=SegmentId(segment_id.episode_id, start, stop),
)
class DatasetTraverser:
def __init__(self, dataset, batch_num_samples: int, chunk_size: int) -> None:
self.dataset = dataset
self.batch_num_samples = batch_num_samples
self.chunk_size = chunk_size
def __len__(self):
return math.ceil(
sum(
[
math.ceil(self.dataset.lengths[episode_id] / self.chunk_size)
- int(self.dataset.lengths[episode_id] % self.chunk_size == 1)
for episode_id in range(self.dataset.num_episodes)
]
)
/ self.batch_num_samples
)
def __iter__(self) -> Generator[Batch, None, None]:
chunks = []
for episode_id in range(self.dataset.num_episodes):
episode = self.dataset.load_episode(episode_id)
segments = []
for i in range(math.ceil(len(episode) / self.chunk_size)):
start = i * self.chunk_size
stop = (i + 1) * self.chunk_size
segment = make_segment(
episode,
SegmentId(episode_id, start, stop),
should_pad=True,
)
segment_id_full_res = SegmentId(episode.info["original_file_id"], start, stop)
segment.info["full_res"] = self.dataset._dataset_full_res[segment_id_full_res].obs
chunks.append(segment)
if chunks[-1].effective_size < 2:
chunks.pop()
while len(chunks) >= self.batch_num_samples:
yield collate_segments_to_batch(chunks[: self.batch_num_samples])
chunks = chunks[self.batch_num_samples :]
if len(chunks) > 0:
yield collate_segments_to_batch(chunks)