Spaces:
Sleeping
Sleeping
| title: APEC Angiography Segmentation | |
| emoji: 🫀 | |
| colorFrom: red | |
| colorTo: pink | |
| sdk: streamlit | |
| sdk_version: 1.28.1 | |
| app_file: app.py | |
| pinned: false | |
| # Apec Segmentation | |
| ## Apec paper | |
| Please see [here](https://doi.org/10.1016/j.ijcard.2024.132598) for our paper in the International Journal of Cardiology | |
| Please cite it! | |
| > Mahendiran, T., Thanou, D., Senouf, O., Jamaa, Y., Fournier, S., De Bruyne, B., ... & Andò, E. (2025). Apec Segmentation: An open-source, user-guided deep learning tool for coronary artery segmentation. International journal of cardiology, 418, 132598. | |
| ## Apec in the news | |
| Apec segmentation is being used in [this RTS reportage on AI in Cardiology](https://www.rts.ch/play/tv/19h30/video/lia-fait-irruption-en-cardiologie-et-redefinit-le-role-des-medecins?urn=urn:rts:video:15479233) (in French) | |
| ## Online Example | |
| Please visit https://imaging.epfl.ch/angiopy-segmentation/ for a live demo of this code on some example DICOM images | |
|  | |
| ## Description | |
| This software allows single arteries to be segmented given a few clicks on a single time frame with a PyTorch 2 Deep Learning model. | |
| ## Installing and running | |
| - Install dependencies: ` pip install -r requirements.txt` | |
| - Launch Streamlit Web Interface: `streamlit run angioPySegmentation.py --server.fileWatcherType none` | |
| ...a website should pop up in your browser! | |
| You need to create a /Dicom folder and put some angiography DICOMs in there | |
| # How to run the project | |
| ## Create virtual environment and activate it | |
| ```bash | |
| uv venv | |
| source .venv/bin/activate | |
| uv pip install -r requirements.txt | |
| ``` | |