tzzte's picture
Upload 223 files
7819b34 verified
raw
history blame
17.2 kB
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Example Usage
CUDA_VISIBLE_DEVICES=0 \
python3 token2wav.py --enable-trt || exit 1
"""
import torch
from flashcosyvoice.modules.flow import CausalMaskedDiffWithXvec
from flashcosyvoice.modules.hifigan import HiFTGenerator
from flashcosyvoice.utils.audio import mel_spectrogram
import torchaudio.compliance.kaldi as kaldi
import onnxruntime
import s3tokenizer
from torch.utils.data import DataLoader
from datasets import load_dataset
import torchaudio
import os
import logging
import argparse
import queue
import time
def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
import tensorrt as trt
logging.info("Converting onnx to trt...")
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
logger = trt.Logger(trt.Logger.INFO)
builder = trt.Builder(logger)
network = builder.create_network(network_flags)
parser = trt.OnnxParser(network, logger)
config = builder.create_builder_config()
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 32) # 4GB
if fp16:
config.set_flag(trt.BuilderFlag.FP16)
profile = builder.create_optimization_profile()
# load onnx model
with open(onnx_model, "rb") as f:
if not parser.parse(f.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
raise ValueError('failed to parse {}'.format(onnx_model))
# set input shapes
for i in range(len(trt_kwargs['input_names'])):
profile.set_shape(trt_kwargs['input_names'][i], trt_kwargs['min_shape'][i], trt_kwargs['opt_shape'][i], trt_kwargs['max_shape'][i])
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
# set input and output data type
for i in range(network.num_inputs):
input_tensor = network.get_input(i)
input_tensor.dtype = tensor_dtype
for i in range(network.num_outputs):
output_tensor = network.get_output(i)
output_tensor.dtype = tensor_dtype
config.add_optimization_profile(profile)
engine_bytes = builder.build_serialized_network(network, config)
# save trt engine
with open(trt_model, "wb") as f:
f.write(engine_bytes)
logging.info("Succesfully convert onnx to trt...")
class TrtContextWrapper:
def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
self.trt_engine = trt_engine
self.device = device
for _ in range(trt_concurrent):
trt_context = trt_engine.create_execution_context()
trt_stream = torch.cuda.stream(torch.cuda.Stream(torch.device(device)))
assert trt_context is not None, 'failed to create trt context, maybe not enough CUDA memory, try reduce current trt concurrent {}'.format(trt_concurrent)
self.trt_context_pool.put([trt_context, trt_stream])
assert self.trt_context_pool.empty() is False, 'no avaialbe estimator context'
def acquire_estimator(self):
return self.trt_context_pool.get(), self.trt_engine
def release_estimator(self, context, stream):
self.trt_context_pool.put([context, stream])
class CosyVoice2_Token2Wav(torch.nn.Module):
def __init__(self, model_dir: str = "./CosyVoice2-0.5B", enable_trt: bool = False, device_id: int = 0):
super().__init__()
self.device_id = device_id
self.device = f"cuda:{device_id}"
self.flow = CausalMaskedDiffWithXvec()
self.flow.half()
self.flow.load_state_dict(torch.load(f"{model_dir}/flow.pt", map_location="cpu", weights_only=True), strict=True)
self.flow.to(self.device).eval()
self.hift = HiFTGenerator()
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(f"{model_dir}/hift.pt", map_location="cpu", weights_only=True).items()}
self.hift.load_state_dict(hift_state_dict, strict=True)
self.hift.to(self.device).eval()
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
self.spk_model = onnxruntime.InferenceSession(f"{model_dir}/campplus.onnx", sess_options=option, providers=["CPUExecutionProvider"])
self.audio_tokenizer = s3tokenizer.load_model(f"{model_dir}/speech_tokenizer_v2.onnx").to(self.device).eval()
gpu = "l20"
if enable_trt:
self.load_trt(f'{model_dir}/flow.decoder.estimator.fp16.dynamic_batch.{gpu}.plan',
f'{model_dir}/flow.decoder.estimator.fp32.dynamic_batch.onnx',
1,
True)
self.load_spk_trt(f'{model_dir}/campplus.{gpu}.fp32.trt',
f'{model_dir}/campplus.onnx',
1,
False)
def forward_spk_embedding(self, spk_feat):
if isinstance(self.spk_model, onnxruntime.InferenceSession):
return self.spk_model.run(
None, {self.spk_model.get_inputs()[0].name: spk_feat.unsqueeze(dim=0).cpu().numpy()}
)[0].flatten().tolist()
else:
[spk_model, stream], trt_engine = self.spk_model.acquire_estimator()
# NOTE need to synchronize when switching stream
with torch.cuda.device(self.device_id):
torch.cuda.current_stream().synchronize()
spk_feat = spk_feat.unsqueeze(dim=0).to(self.device)
batch_size = spk_feat.size(0)
with stream:
spk_model.set_input_shape('input', (batch_size, spk_feat.size(1), 80))
output_tensor = torch.empty((batch_size, 192), device=spk_feat.device)
data_ptrs = [spk_feat.contiguous().data_ptr(),
output_tensor.contiguous().data_ptr()]
for i, j in enumerate(data_ptrs):
spk_model.set_tensor_address(trt_engine.get_tensor_name(i), j)
# run trt engine
assert spk_model.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
torch.cuda.current_stream().synchronize()
self.spk_model.release_estimator(spk_model, stream)
return output_tensor.cpu().numpy().flatten().tolist()
def load_spk_trt(self, spk_model, spk_onnx_model, trt_concurrent=1, fp16=True):
if not os.path.exists(spk_model) or os.path.getsize(spk_model) == 0:
trt_kwargs = self.get_spk_trt_kwargs()
convert_onnx_to_trt(spk_model, trt_kwargs, spk_onnx_model, fp16)
import tensorrt as trt
with open(spk_model, 'rb') as f:
spk_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
assert spk_engine is not None, 'failed to load trt {}'.format(spk_model)
self.spk_model = TrtContextWrapper(spk_engine, trt_concurrent=trt_concurrent, device=self.device)
def get_spk_trt_kwargs(self):
min_shape = [(1, 4, 80)]
opt_shape = [(1, 500, 80)]
max_shape = [(1, 3000, 80)]
input_names = ["input"]
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent=1, fp16=True):
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
trt_kwargs = self.get_trt_kwargs_dynamic_batch(opt_bs=2, max_batch_size=16)
convert_onnx_to_trt(flow_decoder_estimator_model, trt_kwargs, flow_decoder_onnx_model, fp16)
del self.flow.decoder.estimator
import tensorrt as trt
with open(flow_decoder_estimator_model, 'rb') as f:
estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
def get_trt_kwargs_dynamic_batch(self, opt_bs=2, max_batch_size=64):
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (2,), (2, 80)]
opt_shape = [(opt_bs * 2, 80, 500), (opt_bs * 2, 1, 500), (opt_bs * 2, 80, 500), (opt_bs * 2, 80, 500), (opt_bs * 2,), (opt_bs * 2, 80)]
max_shape = [(max_batch_size * 2, 80, 3000), (max_batch_size * 2, 1, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2,),
(max_batch_size * 2, 80)]
input_names = ["x", "mask", "mu", "cond", "t", "spks"]
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
def prompt_audio_tokenization(self, prompt_audios_list: list[torch.Tensor]) -> list[list[int]]:
prompt_speech_tokens_list, prompt_speech_mels_list = [], []
for audio in prompt_audios_list:
assert len(audio.shape) == 1
log_mel = s3tokenizer.log_mel_spectrogram(audio) # [num_mels, T]
prompt_speech_mels_list.append(log_mel)
prompt_mels_for_llm, prompt_mels_lens_for_llm = s3tokenizer.padding(prompt_speech_mels_list)
prompt_speech_tokens, prompt_speech_tokens_lens = self.audio_tokenizer.quantize(
prompt_mels_for_llm.to(self.device), prompt_mels_lens_for_llm.to(self.device)
)
for i in range(len(prompt_speech_tokens)):
speech_tokens_i = prompt_speech_tokens[i, :prompt_speech_tokens_lens[i].item()].tolist()
prompt_speech_tokens_list.append(speech_tokens_i)
return prompt_speech_tokens_list
def get_spk_emb(self, prompt_audios_list: list[torch.Tensor]) -> torch.Tensor:
spk_emb_for_flow = []
for audio in prompt_audios_list:
assert len(audio.shape) == 1
spk_feat = kaldi.fbank(audio.unsqueeze(0), num_mel_bins=80, dither=0, sample_frequency=16000)
spk_feat = spk_feat - spk_feat.mean(dim=0, keepdim=True)
spk_emb = self.forward_spk_embedding(spk_feat)
spk_emb_for_flow.append(spk_emb)
spk_emb_for_flow = torch.tensor(spk_emb_for_flow)
return spk_emb_for_flow
def get_prompt_mels(self, prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]):
prompt_mels_for_flow = []
prompt_mels_lens_for_flow = []
for audio, sample_rate in zip(prompt_audios_list, prompt_audios_sample_rate):
assert len(audio.shape) == 1
audio = audio.unsqueeze(0)
if sample_rate != 24000:
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=24000)(audio)
mel = mel_spectrogram(audio).transpose(1, 2).squeeze(0) # [T, num_mels]
mel_len = mel.shape[0]
prompt_mels_for_flow.append(mel)
prompt_mels_lens_for_flow.append(mel_len)
prompt_mels_for_flow = torch.nn.utils.rnn.pad_sequence(prompt_mels_for_flow, batch_first=True, padding_value=0) # [B, T', num_mels=80]
prompt_mels_lens_for_flow = torch.tensor(prompt_mels_lens_for_flow)
return prompt_mels_for_flow, prompt_mels_lens_for_flow
def forward_flow(self, prompt_speech_tokens_list: list[list[int]], generated_speech_tokens_list: list[list[int]], prompt_mels_for_flow: torch.Tensor,
prompt_mels_lens_for_flow: torch.Tensor, spk_emb_for_flow: torch.Tensor):
batch_size = prompt_mels_for_flow.shape[0]
flow_inputs = []
flow_inputs_lens = []
for prompt_speech_tokens, generated_speech_tokens in zip(prompt_speech_tokens_list, generated_speech_tokens_list):
flow_inputs.append(torch.tensor(prompt_speech_tokens + generated_speech_tokens))
flow_inputs_lens.append(len(prompt_speech_tokens) + len(generated_speech_tokens))
flow_inputs = torch.nn.utils.rnn.pad_sequence(flow_inputs, batch_first=True, padding_value=0)
flow_inputs_lens = torch.tensor(flow_inputs_lens)
with torch.amp.autocast(self.device, dtype=torch.float16):
generated_mels, generated_mels_lens = self.flow(
flow_inputs.to(self.device), flow_inputs_lens.to(self.device),
prompt_mels_for_flow.to(self.device), prompt_mels_lens_for_flow.to(self.device), spk_emb_for_flow.to(self.device),
streaming=False, finalize=True
)
return generated_mels, generated_mels_lens
def forward_hift(self, generated_mels: torch.Tensor, generated_mels_lens: torch.Tensor, prompt_mels_lens_for_flow: torch.Tensor):
batch_size = generated_mels.shape[0]
generated_wavs = []
for i in range(batch_size):
mel = generated_mels[i, :, prompt_mels_lens_for_flow[i].item():generated_mels_lens[i].item()].unsqueeze(0)
wav, _ = self.hift(speech_feat=mel)
generated_wavs.append(wav)
return generated_wavs
@torch.inference_mode()
def forward(
self, generated_speech_tokens_list: list[list[int]], prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]
):
# assert all item in prompt_audios_sample_rate is 16000
assert all(sample_rate == 16000 for sample_rate in prompt_audios_sample_rate)
prompt_speech_tokens_list = self.prompt_audio_tokenization(prompt_audios_list)
prompt_mels_for_flow, prompt_mels_lens_for_flow = self.get_prompt_mels(prompt_audios_list, prompt_audios_sample_rate)
spk_emb_for_flow = self.get_spk_emb(prompt_audios_list)
generated_mels, generated_mels_lens = self.forward_flow(
prompt_speech_tokens_list, generated_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
generated_wavs = self.forward_hift(generated_mels, generated_mels_lens, prompt_mels_lens_for_flow)
return generated_wavs
def collate_fn(batch):
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = [], [], [], []
for _, item in enumerate(batch):
generated_speech_tokens_list.append(item['target_audio_cosy2_tokens'])
audio = torch.from_numpy(item['prompt_audio']['array']).float()
prompt_audios_list.append(audio)
prompt_audios_sample_rate.append(item['prompt_audio']['sampling_rate'])
ids.append(item['id'])
return ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--enable-trt", action="store_true")
parser.add_argument("--model-dir", type=str, default="./CosyVoice2-0.5B")
parser.add_argument("--batch-size", type=int, default=4)
parser.add_argument("--output-dir", type=str, default="generated_wavs")
parser.add_argument("--huggingface-dataset-split", type=str, default="wenetspeech4tts")
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup epochs, performance statistics will only be collected from the last epoch")
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt)
# mkdir output_dir if not exists
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
dataset_name = "yuekai/seed_tts_cosy2"
dataset = load_dataset(dataset_name, split=args.huggingface_dataset_split, trust_remote_code=True)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=0)
for _ in range(args.warmup):
start_time = time.time()
for batch in data_loader:
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = batch
generated_wavs = model(generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate)
for id, wav in zip(ids, generated_wavs):
torchaudio.save(f"{args.output_dir}/{id}.wav", wav.cpu(), 24000)
end_time = time.time()
epoch_time = end_time - start_time
print(f"Measurement epoch time taken: {epoch_time:.4f} seconds")