File size: 30,713 Bytes
86f2273 9160cc3 c389f60 86f2273 ee82f9e 86f2273 ee82f9e c5cb13a 86f2273 41136a7 86f2273 41136a7 86f2273 a565d25 86f2273 a565d25 86f2273 a565d25 86f2273 c5cb13a a565d25 39778cd a565d25 c5cb13a a565d25 86f2273 5fcf529 a565d25 5fcf529 86f2273 5fcf529 86f2273 5fcf529 86f2273 87b95ac e14296a 87b95ac 3552dbb a565d25 86f2273 a565d25 86f2273 2d0d64e 86f2273 a565d25 86f2273 a565d25 86f2273 a565d25 86f2273 e4cb957 ab655cc 0f6bc4e 86f2273 30ae992 86f2273 30ae992 e4cb957 ab655cc 30ae992 e4cb957 ab655cc 0f6bc4e 86f2273 e4cb957 ab655cc e4cb957 30ae992 e4cb957 30ae992 e4cb957 ab655cc e4cb957 86f2273 c389f60 e898458 c389f60 ddc470f c389f60 ddc470f c389f60 9aa52c7 c389f60 1feefa8 c389f60 9aa52c7 09e41fd 91700a2 09e41fd c389f60 0476e3d 9aa52c7 0476e3d bb03cb8 0476e3d bb03cb8 0476e3d bb03cb8 0476e3d bb03cb8 9a751f4 0476e3d c389f60 e898458 c389f60 e898458 c389f60 e898458 c389f60 e898458 c389f60 e898458 c389f60 9aa52c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
# api_client.py (UI - Space "veureu")
import os
import requests
import base64
import zipfile
import io
from typing import Iterable, Dict, Any, Tuple
from PIL import Image
class APIClient:
"""
Cliente para 'engine':
POST /jobs -> {"job_id": "..."}
GET /jobs/{job_id}/status -> {"status": "queued|processing|done|failed", ...}
GET /jobs/{job_id}/result -> JobResult {"book": {...}, "une": {...}, ...}
"""
def __init__(self, base_url: str, use_mock: bool = False, data_dir: str | None = None, token: str | None = None, timeout: int = 180, tts_url: str | None = None):
self.base_url = base_url.rstrip("/")
# URL específica para el servicio TTS (por defecto usa la variable de entorno API_TTS_URL)
self.tts_url = tts_url or os.getenv("API_TTS_URL", "https://veureu-tts.hf.space")
print(f"🔧 APIClient.__init__ - tts_url recibida: {tts_url}")
print(f"🔧 APIClient.__init__ - os.getenv(API_TTS_URL): {os.getenv('API_TTS_URL')}")
print(f"🔧 APIClient.__init__ - self.tts_url final: {self.tts_url}")
print(f"🔧 APIClient.__init__ - tipo self.tts_url: {type(self.tts_url)}")
print(f"🔧 APIClient.__init__ - repr self.tts_url: {repr(self.tts_url)}")
self.use_mock = use_mock
self.data_dir = data_dir
self.timeout = timeout
self.session = requests.Session()
# Permite inyectar el token del engine via secret/var en el Space UI
token = token or os.getenv("API_SHARED_TOKEN")
if token:
self.session.headers.update({"Authorization": f"Bearer {token}"})
# ---- modo real (engine) ----
def _post_jobs(self, video_path: str, modes: Iterable[str]) -> Dict[str, Any]:
url = f"{self.base_url}/jobs"
files = {"file": (os.path.basename(video_path), open(video_path, "rb"), "application/octet-stream")}
data = {"modes": ",".join(modes)}
r = self.session.post(url, files=files, data=data, timeout=self.timeout)
r.raise_for_status()
return r.json() # {"job_id": ...}
def _get_status(self, job_id: str) -> Dict[str, Any]:
url = f"{self.base_url}/jobs/{job_id}/status"
r = self.session.get(url, timeout=self.timeout)
if r.status_code == 404:
return {"status": "not_found"}
r.raise_for_status()
return r.json()
def _get_result(self, job_id: str) -> Dict[str, Any]:
url = f"{self.base_url}/jobs/{job_id}/status"
r = self.session.get(url, timeout=self.timeout)
if r.status_code == 404:
return {"status": "not_found"}
r.raise_for_status()
return r.json() # JobResult (status + results según engine)
# ---- API que usa streamlit_app.py ----
def process_video(self, video_path: str, modes: Iterable[str]) -> Dict[str, Any]:
"""Devuelve {"job_id": "..."}"""
if self.use_mock:
return {"job_id": "mock-123"}
return self._post_jobs(video_path, modes)
def get_job(self, job_id: str) -> Dict[str, Any]:
"""
La UI espera algo del estilo:
{"status":"done","results":{"book":{...},"une":{...}}}
Adaptamos la respuesta de /result del engine a ese contrato.
"""
if self.use_mock:
# resultado inmediato de prueba
return {
"status": "done",
"results": {
"book": {"text": "Text d'exemple (book)", "mp3_bytes": b""},
"une": {"srt": "1\n00:00:00,000 --> 00:00:01,000\nExemple UNE\n", "mp3_bytes": b""},
}
}
# Opción 1: chequear estado primero
st = self._get_status(job_id)
if st.get("status") in {"queued", "processing"}:
return {"status": st.get("status", "queued")}
# Opción 2: obtener resultado final
res = self._get_result(job_id)
# NUEVO: si el engine ya devuelve {"status": ..., "results": {...}}, pásalo tal cual
if isinstance(res, dict) and isinstance(res.get("results"), dict):
return {
"status": res.get("status", st.get("status", "done")),
"results": res.get("results", {}),
}
# LEGACY: mapeo antiguo basado en claves top-level (book/une)
results = {}
if "book" in res:
results["book"] = {
"text": res["book"].get("text"),
}
if "une" in res:
results["une"] = {
"srt": res["une"].get("srt"),
}
for k in ("book", "une"):
if k in res:
if "characters" in res[k]:
results[k]["characters"] = res[k]["characters"]
if "metrics" in res[k]:
results[k]["metrics"] = res[k]["metrics"]
status = "done" if results else st.get("status", "unknown")
return {"status": status, "results": results}
def tts_matxa(self, text: str, voice: str = "central/grau") -> dict:
"""
Llama al space 'tts' para sintetizar audio.
Usa /tts/text para textos cortos (<480 chars) o /tts/text_long para textos largos.
Args:
text (str): Texto a sintetizar.
voice (str): Voz de Matxa a usar (p.ej. 'central/grau').
Returns:
dict: {'mp3_bytes': bytes} o {'error': str}
"""
if not self.tts_url:
raise ValueError("La URL del servei TTS no està configurada (API_TTS_URL)")
print(f"🔧 tts_matxa - self.tts_url ANTES de construir URL: {self.tts_url}")
print(f"🔧 tts_matxa - tipo self.tts_url: {type(self.tts_url)}")
print(f"🔧 tts_matxa - repr self.tts_url: {repr(self.tts_url)}")
# Usar endpoint apropiado según la longitud del texto
if len(text) > 480:
url = f"{self.tts_url.rstrip('/')}/tts/text_long"
else:
url = f"{self.tts_url.rstrip('/')}/tts/text"
print(f"🔧 tts_matxa - URL final construida: {url}")
print(f"🔧 tts_matxa - repr URL final: {repr(url)}")
data = {
"texto": text,
"voice": voice,
"formato": "mp3"
}
try:
print(f"🎯 Llamando TTS a: {url}")
print(f"📝 Texto length: {len(text)} caracteres")
print(f"🗣️ Voz: {voice}")
r = self.session.post(url, data=data, timeout=self.timeout * 2) # Más tiempo para textos largos
print(f"📊 Response status: {r.status_code}")
r.raise_for_status()
# Devolver los bytes directamente para que el cliente los pueda concatenar
print(f"✅ Audio recibido: {len(r.content)} bytes")
return {"mp3_bytes": r.content}
except requests.exceptions.RequestException as e:
print(f"❌ Error cridant a TTS: {e}")
print(f"❌ URL: {url}")
print(f"❌ Data: {data}")
# Devolvemos un diccionario con error para que la UI lo muestre
return {"error": str(e)}
def generate_audiodescription(self, video_bytes: bytes, video_name: str) -> dict:
"""Llama al endpoint del engine /generate_audiodescription con un MP4 en memoria."""
url = f"{self.base_url}/generate_audiodescription"
try:
files = {
"video": (video_name or "video.mp4", video_bytes, "video/mp4")
}
r = self.session.post(url, files=files, timeout=self.timeout * 10)
r.raise_for_status()
return r.json()
except requests.exceptions.RequestException as e:
return {"error": str(e)}
def finalize_casting(self, payload: dict) -> dict:
"""Envía el càsting definitiu al engine para consolidar identidades e indexar."""
url = f"{self.base_url}/finalize_casting"
try:
r = self.session.post(url, json=payload, timeout=self.timeout * 5)
r.raise_for_status()
return r.json()
except requests.exceptions.HTTPError as e:
resp = e.response
try:
# Try to include JSON error if present
return {"error": str(e), "status_code": resp.status_code if resp is not None else None, "body": resp.json() if resp is not None else None}
except Exception:
# Fallback to text body
return {"error": str(e), "status_code": resp.status_code if resp is not None else None, "body": (resp.text if resp is not None else None)}
except requests.exceptions.RequestException as e:
return {"error": str(e)}
def load_casting(self, faces_dir: str, voices_dir: str, db_dir: str, drop_collections: bool = False) -> dict:
"""Carga índices de caras y voces al motor de búsqueda Chroma del engine."""
url = f"{self.base_url}/load_casting"
data = {
"faces_dir": faces_dir,
"voices_dir": voices_dir,
"db_dir": db_dir,
"drop_collections": str(1 if drop_collections else 0),
}
try:
r = self.session.post(url, data=data, timeout=self.timeout * 5)
r.raise_for_status()
return r.json()
except requests.exceptions.RequestException as e:
return {"error": str(e)}
def rebuild_video_with_ad(self, video_path: str, srt_path: str, voice: str = "central/grau") -> dict:
"""
Llama al space 'tts' para reconstruir un vídeo con audiodescripció a partir de un SRT.
Usa el endpoint /tts/srt que devuelve un ZIP con el vídeo final.
Args:
video_path: Ruta al archivo de vídeo original
srt_path: Ruta al archivo SRT con las audiodescripciones
voice: Voz de Matxa (por defecto 'central/grau')
Returns:
dict: {'video_bytes': bytes} o {'error': str}
"""
if not self.tts_url:
raise ValueError("La URL del servei TTS no està configurada (API_TTS_URL)")
url = f"{self.tts_url.rstrip('/')}/tts/srt"
print(f"🎬 Reconstruyendo video con AD")
print(f"🎯 URL TTS: {url}")
print(f"📹 Video: {video_path}")
print(f"📝 SRT: {srt_path}")
print(f"🗣️ Voz: {voice}")
try:
with open(video_path, 'rb') as video_file:
with open(srt_path, 'rb') as srt_file:
files = {
'video': (os.path.basename(video_path), video_file, 'video/mp4'),
'srt': (os.path.basename(srt_path), srt_file, 'application/x-subrip')
}
data = {
"voice": voice,
"ad_format": "mp3",
"include_final_mp4": "1"
}
r = self.session.post(url, files=files, data=data, timeout=self.timeout * 5)
r.raise_for_status()
# El servidor devuelve un ZIP, lo procesamos en memoria
with zipfile.ZipFile(io.BytesIO(r.content)) as z:
# Buscamos el archivo video_con_ad.mp4 dentro del ZIP
for filename in z.namelist():
if filename.endswith('.mp4'):
video_bytes = z.read(filename)
return {"video_bytes": video_bytes}
# Si no se encuentra el MP4 en el ZIP
return {"error": "No se encontró el archivo de vídeo MP4 en la respuesta del servidor."}
except requests.exceptions.RequestException as e:
print(f"Error cridant a la reconstrucció de vídeo: {e}")
return {"error": str(e)}
except zipfile.BadZipFile:
return {"error": "La respuesta del servidor no fue un archivo ZIP válido."}
except Exception as e:
print(f"Error inesperat: {e}")
return {"error": str(e)}
def refine_narration(self, dialogues_srt: str, frame_descriptions_json: str = "[]", config_path: str = "config.yaml") -> dict:
"""Llama al endpoint del engine /refine_narration para generar narrativa y/o SRT."""
url = f"{self.base_url}/refine_narration"
data = {
"dialogues_srt": dialogues_srt,
"frame_descriptions_json": frame_descriptions_json,
"config_path": config_path,
}
try:
r = self.session.post(url, data=data, timeout=self.timeout)
r.raise_for_status()
return r.json()
except requests.exceptions.RequestException as e:
return {"error": str(e)}
def create_initial_casting(self, video_path: str = None, video_bytes: bytes = None, video_name: str = None,
face_max_groups: int = 3, face_min_cluster_size: int = 3, face_sensitivity: float = 0.5,
voice_max_groups: int = 3, voice_min_cluster_size: int = 3, voice_sensitivity: float = 0.5,
max_frames: int = 100) -> dict:
"""
Llama al endpoint del space 'engine' para crear el 'initial casting'.
Envía el vídeo recién importado como archivo y los parámetros de clustering.
Args:
video_path: Path to video file (if reading from disk)
video_bytes: Video file bytes (if already in memory)
video_name: Name for the video file
face_max_groups: Max number of face clusters (hierarchical)
face_min_cluster_size: Minimum face cluster size
voice_max_groups: Max number of voice clusters (hierarchical)
voice_min_cluster_size: Minimum voice cluster size
max_frames: Maximum number of frames to process
"""
url = f"{self.base_url}/create_initial_casting"
try:
# Prepare file data
if video_bytes:
filename = video_name or "video.mp4"
files = {
"video": (filename, video_bytes, "video/mp4"),
}
elif video_path:
with open(video_path, "rb") as f:
files = {
"video": (os.path.basename(video_path), f.read(), "video/mp4"),
}
else:
return {"error": "Either video_path or video_bytes must be provided"}
data = {
"max_groups": str(face_max_groups),
"min_cluster_size": str(face_min_cluster_size),
"face_sensitivity": str(face_sensitivity),
"voice_max_groups": str(voice_max_groups),
"voice_min_cluster_size": str(voice_min_cluster_size),
"voice_sensitivity": str(voice_sensitivity),
"max_frames": str(max_frames),
}
r = self.session.post(url, files=files, data=data, timeout=self.timeout * 5)
r.raise_for_status()
return r.json() if r.headers.get("content-type", "").startswith("application/json") else {"ok": True}
except requests.exceptions.RequestException as e:
return {"error": str(e)}
except Exception as e:
return {"error": f"Unexpected error: {str(e)}"}
def detect_scenes(self, video_path: str = None, video_bytes: bytes = None, video_name: str = None,
max_groups: int = 3, min_cluster_size: int = 3, scene_sensitivity: float = 0.5, frame_interval_sec: float = 0.5) -> dict:
"""
Call engine /detect_scenes to compute scene clusters using hierarchical clustering on color histograms.
"""
url = f"{self.base_url}/detect_scenes"
try:
if video_bytes:
filename = video_name or "video.mp4"
files = {
"video": (filename, video_bytes, "video/mp4"),
}
elif video_path:
with open(video_path, "rb") as f:
files = {
"video": (os.path.basename(video_path), f.read(), "video/mp4"),
}
else:
return {"error": "Either video_path or video_bytes must be provided"}
data = {
"max_groups": str(max_groups),
"min_cluster_size": str(min_cluster_size),
"scene_sensitivity": str(scene_sensitivity),
"frame_interval_sec": str(frame_interval_sec),
}
r = self.session.post(url, files=files, data=data, timeout=self.timeout * 5)
r.raise_for_status()
return r.json()
except requests.exceptions.RequestException as e:
return {"error": str(e)}
def generate_audio_from_text_file(self, text_content: str, voice: str = "central/grau") -> dict:
"""
Genera un único MP3 a partir de un texto largo, usando el endpoint de SRT.
1. Convierte el texto en un SRT falso.
2. Llama a /tts/srt con el SRT.
3. Extrae el 'ad_master.mp3' del ZIP resultante.
"""
if not self.tts_url:
raise ValueError("La URL del servei TTS no està configurada (API_TTS_URL)")
# 1. Crear un SRT falso en memoria
srt_content = ""
start_time = 0
for i, line in enumerate(text_content.strip().split('\n')):
line = line.strip()
if not line:
continue
# Asignar 5 segundos por línea, un valor simple
end_time = start_time + 5
def format_time(seconds):
h = int(seconds / 3600)
m = int((seconds % 3600) / 60)
s = int(seconds % 60)
ms = int((seconds - int(seconds)) * 1000)
return f"{h:02d}:{m:02d}:{s:02d},{ms:03d}"
srt_content += f"{i+1}\n"
srt_content += f"{format_time(start_time)} --> {format_time(end_time)}\n"
srt_content += f"{line}\n\n"
start_time = end_time
if not srt_content:
return {"error": "El texto proporcionado estaba vacío o no se pudo procesar."}
# 2. Llamar al endpoint /tts/srt
url = f"{self.tts_url.rstrip('/')}/tts/srt"
try:
files = {
'srt': ('fake_ad.srt', srt_content, 'application/x-subrip')
}
data = {"voice": voice, "ad_format": "mp3"}
r = requests.post(url, files=files, data=data, timeout=self.timeout * 5)
r.raise_for_status()
# 3. Extraer 'ad_master.mp3' del ZIP
with zipfile.ZipFile(io.BytesIO(r.content)) as z:
for filename in z.namelist():
if filename == 'ad_master.mp3':
mp3_bytes = z.read(filename)
return {"mp3_bytes": mp3_bytes}
return {"error": "No se encontró 'ad_master.mp3' en la respuesta del servidor."}
except requests.exceptions.RequestException as e:
return {"error": f"Error llamando a la API de SRT: {e}"}
except zipfile.BadZipFile:
return {"error": "La respuesta del servidor no fue un archivo ZIP válido."}
def tts_long_text(self, text: str, voice: str = "central/grau") -> dict:
"""
Llama al endpoint '/tts/text_long' para sintetizar un texto largo.
La API se encarga de todo el procesamiento.
"""
if not self.tts_url:
raise ValueError("La URL del servei TTS no està configurada (API_TTS_URL)")
url = f"{self.tts_url.rstrip('/')}/tts/text_long"
data = {
"texto": text,
"voice": voice,
"formato": "mp3"
}
try:
# Usamos un timeout más largo por si el texto es muy extenso
r = requests.post(url, data=data, timeout=self.timeout * 10)
r.raise_for_status()
return {"mp3_bytes": r.content}
except requests.exceptions.RequestException as e:
print(f"Error cridant a TTS per a text llarg: {e}")
return {"error": str(e)}
# ===========================
# Cliente para SVision Space
# ===========================
# Nombres catalanes comunes para asignar a personajes (deben coincidir con app.py)
def get_catalan_names():
"""Retorna llistes de noms catalans."""
noms_home = ["Jordi", "Marc", "Pau", "Pere", "Joan", "Josep", "David", "Àlex", "Guillem", "Albert",
"Arnau", "Martí", "Bernat", "Oriol", "Roger", "Pol", "Lluís", "Sergi", "Carles", "Xavier"]
noms_dona = ["Maria", "Anna", "Laura", "Marta", "Cristina", "Núria", "Montserrat", "Júlia", "Sara", "Carla",
"Alba", "Elisabet", "Rosa", "Gemma", "Sílvia", "Teresa", "Irene", "Laia", "Marina", "Bet"]
return noms_home, noms_dona
def describe_image_with_svision(image_path: str, is_face: bool = True) -> Tuple[str, str]:
"""
Llama al space svision para describir una imagen (cara o escena).
Args:
image_path: Ruta absoluta a la imagen
is_face: True si es una cara, False si es una escena
Returns:
tuple (descripción_completa, nombre_abreviado)
"""
try:
from gradio_client import Client, handle_file
# Conectar al space svision con timeout generoso para cold start de ZeroGPU
svision_url = os.getenv("SVISION_URL", "https://veureu-svision.hf.space")
print(f"[svision] Connectant a {svision_url}...")
# Autenticar con HuggingFace token para obtener más cuota de ZeroGPU
hf_token = os.getenv("HF_TOKEN")
if hf_token:
client = Client(svision_url, hf_token=hf_token)
print(f"[svision] Autenticat amb token HF")
else:
client = Client(svision_url)
print(f"[svision] Sense autenticació (cuota limitada)")
# Preparar prompt según el tipo
if is_face:
prompt = "Descriu aquesta persona. Inclou: edat aproximada (jove/adult), gènere, característiques físiques notables (ulleres, barba, bigoti, etc.), expressió i vestimenta."
else:
prompt = "Descriu aquesta escena breument en 2-3 frases: tipus de localització i elements principals."
print(f"[svision] Enviant petició (pot trigar si ZeroGPU està en cold start)...")
print(f"[svision] Image path: {image_path}")
import time
start_time = time.time()
max_tokens = 256 if is_face else 128
max_attempts = int(os.getenv("SVISION_MAX_ATTEMPTS", "5"))
wait_seconds = int(os.getenv("SVISION_RETRY_WAIT", "5"))
result = None
last_error: Exception | None = None
for attempt in range(1, max_attempts + 1):
try:
print(f"[svision] Attempt {attempt}/{max_attempts} (wait={wait_seconds}s)")
result = client.predict(
handle_file(image_path),
prompt,
max_tokens,
0.7,
api_name="/describe"
)
if result and isinstance(result, str) and result.strip():
break
raise RuntimeError("Resposta buida de svision")
except Exception as exc:
last_error = exc
print(f"[svision] Error attempt {attempt}/{max_attempts}: {exc}")
if attempt == max_attempts:
raise
time.sleep(wait_seconds)
wait_seconds = min(wait_seconds * 2, 40)
elapsed = time.time() - start_time
print(f"[svision] Resposta rebuda en {elapsed:.1f}s")
full_description = result.strip() if result else ""
# PASO 1: Eliminar el prompt original que puede aparecer en la respuesta
prompt_markers = [
"Descriu aquesta persona. Inclou: edat aproximada (jove/adult), gènere, característiques físiques notables (ulleres, barba, bigoti, etc.), expressió i vestimenta.",
"Descriu aquesta escena. Inclou: tipus de localització (interior/exterior), elements principals, ambient, il·luminació.",
"Descriu aquesta escena breument en 2-3 frases: tipus de localització i elements principals.",
"Descriu aquesta persona.",
"Descriu aquesta escena.",
]
for marker in prompt_markers:
if marker in full_description:
# Eliminar el prompt y todo lo que esté antes
parts = full_description.split(marker, 1)
if len(parts) > 1:
full_description = parts[1].strip()
# PASO 2: Limpiar prefijos no deseados de forma más agresiva
# Lista de prefijos comunes que aparecen
prefixes_to_remove = [
"user:", "user ", "user\n", "user\t",
"assistant:", "assistant ", "assistant\n", "assistant\t",
"User:", "User ", "User\n",
"Assistant:", "Assistant ", "Assistant\n",
"system:", "system ",
]
# Intentar limpiar múltiples veces por si hay varios prefijos
for _ in range(5): # Máximo 5 iteraciones
original = full_description
for prefix in prefixes_to_remove:
if full_description.lower().startswith(prefix.lower()):
full_description = full_description[len(prefix):].strip()
break
if original == full_description:
break # No hubo cambios, salir
# PASO 3: Limpiar espacios en blanco múltiples y saltos de línea al inicio
full_description = full_description.lstrip()
# PASO 4: Si empieza con salto de línea o tabulación, limpiar
while full_description and full_description[0] in ['\n', '\t', '\r', ' ']:
full_description = full_description[1:]
if not full_description:
return ("", "")
# Generar nombre aleatorio en catalán para caras
if is_face:
# Extraer características clave para el nombre
desc_lower = full_description.lower()
# Determinar género
is_female = any(word in desc_lower for word in ["dona", "noia", "nena", "femení", "femenina"])
# Seleccionar nombre aleatorio pero consistente (hash del path)
import hashlib
hash_val = int(hashlib.md5(image_path.encode()).hexdigest(), 16)
noms_home, noms_dona = get_catalan_names()
if is_female:
name_list = noms_dona
else:
name_list = noms_home
# Usar hash para selección consistente
short_name = name_list[hash_val % len(name_list)]
else:
# Para escenas, extraer primeras palabras clave
words = full_description.split()[:4]
short_name = " ".join(words).capitalize()
print(f"[svision] Descripció generada: {full_description[:100]}...")
print(f"[svision] Nom: {short_name}")
return (full_description, short_name)
except Exception as e:
print(f"[svision] Error al descriure imatge: {e}")
import traceback
traceback.print_exc()
return ("", "")
def generate_short_scene_name(description: str) -> str:
"""
Genera un nombre corto de escena (< 3 palabras) basándose en la descripción
usando el modelo schat (Salamandra-Instruct).
Args:
description: Descripción completa de la escena de svision
Returns:
Nombre corto de la escena (< 3 palabras) o string vacío si falla
"""
try:
# Importar gradio_client
from gradio_client import Client, handle_file
# URL del space schat
schat_url = os.getenv("SCHAT_URL", "https://veureu-schat.hf.space")
print(f"[schat] Connectant a {schat_url}...")
# Autenticar con HuggingFace token
hf_token = os.getenv("HF_TOKEN")
if hf_token:
client = Client(schat_url, hf_token=hf_token)
print(f"[schat] Autenticat amb token HF")
else:
client = Client(schat_url)
print(f"[schat] Sense autenticació")
# Preparar prompt
prompt = f"Basant-te en aquesta descripció d'una escena, genera un nom curt de menys de 3 paraules que la resumeixi:\n\n{description}\n\nNom de l'escena:"
print(f"[schat] Generant nom curt per descripció: {description[:100]}...")
# Llamar al endpoint /predict de schat
# Parámetros típicos: mensaje, historial, max_new_tokens, temperature, top_p, top_k, repetition_penalty
result = client.predict(
prompt, # mensaje
[], # historial vacío
256, # max_new_tokens
0.7, # temperature
0.9, # top_p
50, # top_k
1.0, # repetition_penalty
api_name="/predict"
)
# El resultado es una tupla (respuesta, historial)
if isinstance(result, tuple) and len(result) >= 1:
short_name = result[0].strip() if result[0] else ""
elif isinstance(result, str):
short_name = result.strip()
else:
short_name = ""
# Limpiar posibles comillas o puntuación extra
short_name = short_name.strip('"\'.,!?').strip()
# Limpiar prefijos no deseados
prefixes_to_remove = [
"Nom de l'escena:",
"nom de l'escena:",
"Escena:",
"escena:",
]
for prefix in prefixes_to_remove:
if short_name.lower().startswith(prefix.lower()):
short_name = short_name[len(prefix):].strip()
# Limitar a 3 palabras
words = short_name.split()
if len(words) > 3:
short_name = " ".join(words[:3])
print(f"[schat] Nom curt generat: {short_name}")
return short_name
except Exception as e:
print(f"[schat] Error al generar nom curt: {e}")
import traceback
traceback.print_exc()
return ""
|