File size: 22,949 Bytes
e5fd4ee 16bf03e e5fd4ee c79f28f 7449830 16bf03e c79f28f 7449830 c79f28f 7449830 c79f28f 7449830 c79f28f e5fd4ee c79f28f 7449830 c79f28f e5fd4ee 7449830 c79f28f e5fd4ee c79f28f 16bf03e c79f28f 7449830 c79f28f 7449830 c79f28f 7449830 c79f28f 16bf03e c79f28f ebfabbf 16bf03e ebfabbf 16bf03e c79f28f ebfabbf 16bf03e ebfabbf 16bf03e ebfabbf 16bf03e ebfabbf 16bf03e ebfabbf 16bf03e c79f28f 16bf03e 18ffd35 c79f28f 16bf03e c79f28f 18ffd35 c79f28f 16bf03e c79f28f 16bf03e c79f28f 16bf03e c79f28f 16bf03e c79f28f 16bf03e c79f28f 16bf03e e5fd4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
import os
import sqlite3
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
from statistics import median
from typing import Optional, Dict, Any, List, Tuple
# Reutilizamos la misma l贸gica que antes, pero centralizada en este m贸dulo
DEFAULT_DB_PATH = None # set by set_db_path at runtime
# Flag global per decidir si es fa servir blockchain (AWS QLDB) per als esdeveniments
USE_BLOCKCHAIN_FOR_EVENTS = False
# Ruta a la base de dades de feedback agregat (separa de users.db)
FEEDBACK_DB_PATH = Path(__file__).resolve().parent / "temp" / "feedback.db"
# Ruta a la base de dades de captions per als scores
CAPTIONS_DB_PATH = Path(__file__).resolve().parent / "temp" / "captions.db"
# Ruta a la base de dades d'esdeveniments (events.db) a demo/temp
EVENTS_DB_PATH = Path(__file__).resolve().parent / "temp" / "events.db"
# Ruta a la base de dades de v铆deos (videos.db) a demo/temp
VIDEOS_DB_PATH = Path(__file__).resolve().parent / "temp" / "videos.db"
def set_db_path(db_path: str):
global DEFAULT_DB_PATH
DEFAULT_DB_PATH = db_path
os.makedirs(os.path.dirname(db_path), exist_ok=True)
def set_blockchain_enabled(enabled: bool) -> None:
"""Activa o desactiva l'煤s de blockchain per registrar esdeveniments.
Quan est脿 desactivat (per defecte), els esdeveniments es registren a
demo/temp/events.db. Quan est脿 activat, s'envien a aws_qldb.
"""
global USE_BLOCKCHAIN_FOR_EVENTS
USE_BLOCKCHAIN_FOR_EVENTS = bool(enabled)
def get_connection():
if not DEFAULT_DB_PATH:
raise ValueError("Database path not set. Call set_db_path(path) first.")
return sqlite3.connect(DEFAULT_DB_PATH)
@contextmanager
def get_conn(db_path: Optional[str] = None):
path = db_path or DEFAULT_DB_PATH
conn = sqlite3.connect(path, check_same_thread=False)
conn.row_factory = sqlite3.Row
try:
yield conn
conn.commit()
finally:
conn.close()
def init_schema():
with get_conn() as conn:
c = conn.cursor()
# (tus tablas existentes)
c.execute(
"""
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password_hash TEXT,
role TEXT NOT NULL,
created_at TEXT NOT NULL
);
"""
)
# Migraciones: asegurar columnas esperadas
try:
c.execute("PRAGMA table_info(users)")
cols = {row[1] for row in c.fetchall()} # set de nombres de columnas
if "password_hash" not in cols:
c.execute("ALTER TABLE users ADD COLUMN password_hash TEXT")
if "role" not in cols:
c.execute("ALTER TABLE users ADD COLUMN role TEXT NOT NULL DEFAULT 'verd'")
if "created_at" not in cols:
c.execute("ALTER TABLE users ADD COLUMN created_at TEXT NOT NULL DEFAULT ''")
except sqlite3.OperationalError:
pass
# Intento de limpieza de columna antigua si existiera (SQLite no permite DROP COLUMN en versiones antiguas)
try:
c.execute("ALTER TABLE users DROP COLUMN pw_hash;")
except sqlite3.OperationalError:
pass
# (opcional: tus otras tablas)
# Esquema per a demo/temp/events.db (registre d'esdeveniments)
EVENTS_DB_PATH.parent.mkdir(parents=True, exist_ok=True)
with sqlite3.connect(str(EVENTS_DB_PATH)) as econn:
ec = econn.cursor()
ec.execute(
"""
CREATE TABLE IF NOT EXISTS events (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT NOT NULL,
session TEXT,
ip TEXT,
user TEXT,
password TEXT,
phone TEXT,
action TEXT NOT NULL,
sha1sum TEXT,
visibility TEXT
);
"""
)
# Afegir columna visibility si la taula ja existia sense aquest camp
try:
ec.execute("ALTER TABLE events ADD COLUMN visibility TEXT")
except sqlite3.OperationalError:
# La columna ja existeix
pass
econn.commit()
# >>> TABLA PARA FEEDBACK DE AD (no depende de videos)
c.execute(
"""
CREATE TABLE IF NOT EXISTS feedback_ad (
id INTEGER PRIMARY KEY AUTOINCREMENT,
video_name TEXT NOT NULL, -- nombre de carpeta dentro de videos/completed
user_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE,
transcripcio INTEGER NOT NULL, -- 1..10
identificacio INTEGER NOT NULL, -- 1..10
localitzacions INTEGER NOT NULL, -- 1..10
activitats INTEGER NOT NULL, -- 1..10
narracions INTEGER NOT NULL, -- 1..10
expressivitat INTEGER NOT NULL, -- 1..10
comments TEXT,
created_at TEXT NOT NULL
);
"""
)
# Add column if it doesn't exist, for backwards compatibility
try:
c.execute(
"ALTER TABLE feedback_ad ADD COLUMN expressivitat INTEGER NOT NULL DEFAULT 7;"
)
except sqlite3.OperationalError:
pass # column already exists
def add_feedback_ad(
video_name: str,
user_id: int,
transcripcio: int,
identificacio: int,
localitzacions: int,
activitats: int,
narracions: int,
expressivitat: int,
comments: str | None,
):
with get_conn() as conn:
conn.execute(
"""INSERT INTO feedback_ad
(video_name, user_id, transcripcio, identificacio, localitzacions, activitats, narracions, expressivitat, comments, created_at)
VALUES (?,?,?,?,?,?,?,?,?,?)""",
(
video_name,
user_id,
transcripcio,
identificacio,
localitzacions,
activitats,
narracions,
expressivitat,
comments,
now_str(),
),
)
def get_feedback_ad_for_video(video_name: str):
with get_conn() as conn:
cur = conn.execute(
"""SELECT * FROM feedback_ad WHERE video_name=? ORDER BY created_at DESC""",
(video_name,),
)
return cur.fetchall()
def get_accessible_videos_for_session(session_id: str | None) -> List[str]:
"""Retorna els noms de v铆deo accessibles per a una sessi贸.
Regles:
- Sempre inclou v铆deos amb visibility='public' a videos.db.
- Afegeix v铆deos per als quals el camp owner coincideix amb algun phone
registrat a events.db per a la mateixa session.
Args:
session_id: Identificador de sessi贸 (st.session_state.session_id).
"""
# 1) V铆deos p煤blics
public_videos: set[str] = set()
with _connect_videos_db() as vconn:
try:
for row in vconn.execute(
"SELECT DISTINCT video_name FROM videos WHERE visibility = 'public'"
):
public_videos.add(row["video_name"])
except sqlite3.OperationalError:
# Si la taula no existeix encara, no hi ha v铆deos
return []
if not session_id:
return sorted(public_videos)
# 2) Tel猫fons associats a la sessi贸 actual
phones: set[str] = set()
with _connect_events_db() as econn:
for row in econn.execute(
"SELECT DISTINCT phone FROM events WHERE session = ? AND phone IS NOT NULL AND phone != ''",
(session_id,),
):
phones.add(row["phone"])
if not phones:
return sorted(public_videos)
# 3) V铆deos amb owner associat a algun d'aquests tel猫fons
owner_videos: set[str] = set()
with _connect_videos_db() as vconn:
q_marks = ",".join("?" for _ in phones)
params: Tuple[Any, ...] = tuple(phones)
query = (
f"SELECT DISTINCT video_name FROM videos WHERE owner IN ({q_marks})"
)
for row in vconn.execute(query, params):
owner_videos.add(row["video_name"])
all_videos = public_videos | owner_videos
return sorted(all_videos)
def _connect_feedback_db() -> sqlite3.Connection:
"""Connexi贸 directa a demo/data/feedback.db.
脡s independent de DEFAULT_DB_PATH perqu猫 aquesta BD 茅s espec铆fica de feedback
agregat importat des de engine.
"""
FEEDBACK_DB_PATH.parent.mkdir(parents=True, exist_ok=True)
conn = sqlite3.connect(str(FEEDBACK_DB_PATH))
conn.row_factory = sqlite3.Row
return conn
def _connect_captions_db() -> sqlite3.Connection:
"""Connexi贸 a demo/data/captions.db i creaci贸 de la taula si cal.
Estructura:
- variable TEXT PRIMARY KEY (p.ex. "score_1")
- caption TEXT (etiqueta humana)
"""
CAPTIONS_DB_PATH.parent.mkdir(parents=True, exist_ok=True)
conn = sqlite3.connect(str(CAPTIONS_DB_PATH))
cur = conn.cursor()
cur.execute(
"""
CREATE TABLE IF NOT EXISTS captions (
variable TEXT PRIMARY KEY,
caption TEXT NOT NULL
);
"""
)
conn.commit()
return conn
def insert_demo_feedback_row(
*,
user: str,
session: str,
video_name: str,
version: str,
une_ad: str,
free_ad: str,
comments: str | None,
transcripcio: int,
identificacio: int,
localitzacions: int,
activitats: int,
narracions: int,
expressivitat: int,
) -> None:
"""Insereix una valoraci贸 detallada a demo/data/feedback.db.
Escala els sliders de 0-7 a 0-100 i desa els textos d'UNE i narraci贸 lliure.
Les columnes de sliders tenen per nom el caption del slider a la UI.
"""
# Escalat 0-7 -> 0-100
def scale(v: int) -> int:
v = max(0, min(7, int(v)))
return int(round(v * 100.0 / 7.0))
slider_values = {
"Precisi贸 Descriptiva": scale(transcripcio),
"Sincronitzaci贸 Temporal": scale(identificacio),
"Claredat i Concisi贸": scale(localitzacions),
"Inclusi贸 de Di脿leg": scale(activitats),
"Contextualitzaci贸": scale(narracions),
"Flux i Ritme de la Narraci贸": scale(expressivitat),
}
ts = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
with _connect_feedback_db() as conn:
conn.execute(
"""
INSERT INTO feedback (
timestamp, user, session, video_name, version, une_ad, free_ad, comments,
score_1, score_2, score_3, score_4, score_5, score_6,
"Precisi贸 Descriptiva",
"Sincronitzaci贸 Temporal",
"Claredat i Concisi贸",
"Inclusi贸 de Di脿leg",
"Contextualitzaci贸",
"Flux i Ritme de la Narraci贸"
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);
""",
(
ts,
user,
session,
video_name,
version,
une_ad,
free_ad,
comments or "",
slider_values["Precisi贸 Descriptiva"],
slider_values["Sincronitzaci贸 Temporal"],
slider_values["Claredat i Concisi贸"],
slider_values["Inclusi贸 de Di脿leg"],
slider_values["Contextualitzaci贸"],
slider_values["Flux i Ritme de la Narraci贸"],
slider_values["Precisi贸 Descriptiva"],
slider_values["Sincronitzaci贸 Temporal"],
slider_values["Claredat i Concisi贸"],
slider_values["Inclusi贸 de Di脿leg"],
slider_values["Contextualitzaci贸"],
slider_values["Flux i Ritme de la Narraci贸"],
),
)
def _connect_events_db() -> sqlite3.Connection:
"""Connexi贸 directa a demo/temp/events.db.
Es fa independent de DEFAULT_DB_PATH per mantenir aquesta BD separada
de users.db, igual que feedback.db.
"""
EVENTS_DB_PATH.parent.mkdir(parents=True, exist_ok=True)
conn = sqlite3.connect(str(EVENTS_DB_PATH))
conn.row_factory = sqlite3.Row
return conn
def _connect_videos_db() -> sqlite3.Connection:
"""Connexi贸 directa a demo/temp/videos.db.
Aquesta BD cont茅 metadades dels v铆deos (video_name, owner, visibility, sha1sum...).
"""
VIDEOS_DB_PATH.parent.mkdir(parents=True, exist_ok=True)
conn = sqlite3.connect(str(VIDEOS_DB_PATH))
conn.row_factory = sqlite3.Row
return conn
def log_event(
*,
session: str,
ip: str,
user: str,
password: str,
phone: str,
action: str,
sha1sum: str,
visibility: str | None = None,
timestamp: Optional[str] = None,
) -> None:
"""Insereix un registre a demo/temp/events.db.
- timestamp: si no s'especifica, es fa servir UTC "YYYY-MM-DD HH:MM:SS".
- session, ip, user, password, phone, sha1sum es guarden com a TEXT.
"""
ts = timestamp or datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
if not USE_BLOCKCHAIN_FOR_EVENTS:
# Mode per defecte: registrar en demo/data/events.db
with _connect_events_db() as conn:
conn.execute(
"""INSERT INTO events
(timestamp, session, ip, user, password, phone, action, sha1sum, visibility)
VALUES (?,?,?,?,?,?,?,?,?)""",
(
ts,
session or "",
ip or "",
user or "",
password or "",
phone or "",
action,
sha1sum or "",
visibility or "",
),
)
else:
# Mode blockchain: delegar a aws_qldb (simulat fins activaci贸 real)
try:
from aws_qldb import qldb_manager
payload = {
"timestamp": ts,
"session": session or "",
"ip": ip or "",
"user": user or "",
"password": password or "",
"phone": phone or "",
"action": action,
"sha1sum": sha1sum or "",
"visibility": visibility or "",
}
# M猫tode espec铆fic per a esdeveniments generics (simulat)
if hasattr(qldb_manager, "record_event"):
qldb_manager.record_event(payload)
else:
# Fallback: registrar com a log simulat
print(f"[QLDB EVENTS - SIMULATED] {payload}")
except Exception as e:
# No interrompre el flux de l'aplicaci贸 per errors de blockchain
print(f"[QLDB EVENTS ERROR] No s'ha pogut registrar l'esdeveniment: {e}")
def get_feedback_video_stats(agg: str = "mitjana") -> List[Dict[str, Any]]:
"""Retorna estad铆stiques agregades per v铆deo de demo/data/feedback.db.
Es basa exclusivament en les columnes num猫riques score_1..score_6 (0-100).
agg pot ser:
- "mitjana": mitjana dels scores per v铆deo.
- "mediana": mediana dels scores per v铆deo.
- "inicial": primer registre (per timestamp) per v铆deo.
- "actual": darrer registre (per timestamp) per v铆deo.
"""
agg = (agg or "mitjana").lower()
with _connect_feedback_db() as conn:
cur = conn.execute(
"""
SELECT
video_name,
timestamp,
score_1,
score_2,
score_3,
score_4,
score_5,
score_6
FROM feedback
"""
)
rows = cur.fetchall()
by_video: Dict[str, List[Dict[str, Any]]] = {}
for row in rows:
vn = row["video_name"]
parsed_scores = [
row["score_1"],
row["score_2"],
row["score_3"],
row["score_4"],
row["score_5"],
row["score_6"],
]
enriched = {
"video_name": vn,
"timestamp": row["timestamp"],
"scores": parsed_scores,
}
by_video.setdefault(vn, []).append(enriched)
def parse_ts(ts: str) -> datetime:
# Format des d'init_feedback.py: "YYYY-MM-DD HH:MM:SS"
try:
return datetime.strptime(ts, "%Y-%m-%d %H:%M:%S")
except Exception:
return datetime.min
result: List[Dict[str, Any]] = []
for video_name, vrows in by_video.items():
if not vrows:
continue
# Ordenem per timestamp per als modes "inicial" i "actual"
vrows_sorted = sorted(vrows, key=lambda r: parse_ts(r["timestamp"]))
def agg_index(idx: int) -> Optional[float]:
vals = [r["scores"][idx] for r in vrows if r["scores"][idx] is not None]
if not vals:
return None
if agg == "mitjana":
return float(sum(vals) / len(vals))
if agg == "mediana":
return float(median(vals))
if agg == "inicial":
first = vrows_sorted[0]["scores"][idx]
return float(first) if first is not None else None
if agg == "actual":
last = vrows_sorted[-1]["scores"][idx]
return float(last) if last is not None else None
# fallback a mitjana si el mode no 茅s reconegut
return float(sum(vals) / len(vals))
row_out: Dict[str, Any] = {
"video_name": video_name,
"n": len(vrows),
}
for i in range(6):
row_out[f"score_{i+1}"] = agg_index(i)
result.append(row_out)
# Ordenaci贸 per defecte alfab猫tica pel nom; l'ordre final es decidir脿 a la UI
result.sort(key=lambda r: r["video_name"])
return result
def _init_captions_from_eval() -> None:
"""Inicialitza captions.db agafant etiquetes des d'un eval.csv.
Per simplicitat, intentem llegir `demo/data/media/parella/MoE/eval.csv`.
Si no existeix o falla, es deixen etiquetes per defecte.
"""
base_demo = Path(__file__).resolve().parent
eval_path = base_demo / "data" / "media" / "parella" / "MoE" / "eval.csv"
default_labels = [f"score_{i}" for i in range(1, 7)]
labels = default_labels[:]
if eval_path.exists():
try:
import csv
with eval_path.open("r", encoding="utf-8") as f:
reader = csv.DictReader(f)
tmp: List[str] = []
for row in reader:
if len(tmp) >= 6:
break
name = (row.get("Caracteristica") or "").strip().strip('"')
if name:
tmp.append(name)
if tmp:
labels = tmp
while len(labels) < 6:
labels.append(default_labels[len(labels)])
labels = labels[:6]
except Exception:
pass
with _connect_captions_db() as conn:
cur = conn.cursor()
cur.execute("DELETE FROM captions")
for i in range(6):
cur.execute(
"INSERT OR REPLACE INTO captions (variable, caption) VALUES (?, ?)",
(f"score_{i+1}", labels[i]),
)
def get_feedback_score_labels() -> List[str]:
"""Retorna les etiquetes humanes per a score_1..score_6 des de captions.db.
Si captions.db 茅s buit, s'intenta inicialitzar-lo a partir d'un eval.csv.
"""
default_labels = [f"score_{i}" for i in range(1, 7)]
with _connect_captions_db() as conn:
cur = conn.cursor()
cur.execute("SELECT variable, caption FROM captions ORDER BY variable")
rows = cur.fetchall()
if not rows:
# Inicialitzar des d'un eval.csv i tornar-ho a intentar
_init_captions_from_eval()
cur.execute("SELECT variable, caption FROM captions ORDER BY variable")
rows = cur.fetchall()
if not rows:
return default_labels
labels: List[str] = []
for _, caption in rows:
labels.append(caption)
while len(labels) < 6:
labels.append(default_labels[len(labels)])
return labels[:6]
def get_feedback_ad_stats():
# medias por v铆deo y ranking
with get_conn() as conn:
cur = conn.execute(
"""
SELECT
video_name,
COUNT(*) AS n,
AVG(transcripcio) AS avg_transcripcio,
AVG(identificacio) AS avg_identificacio,
AVG(localitzacions) AS avg_localitzacions,
AVG(activitats) AS avg_activitats,
AVG(narracions) AS avg_narracions,
AVG(expressivitat) AS avg_expressivitat,
(AVG(transcripcio)+AVG(identificacio)+AVG(localitzacions)+AVG(activitats)+AVG(narracions)+AVG(expressivitat))/6.0 AS avg_global
FROM feedback_ad
GROUP BY video_name
ORDER BY avg_global DESC, n DESC;
"""
)
return cur.fetchall()
def now_str():
return datetime.utcnow().isoformat(timespec="seconds") + "Z"
# Users
def create_user(username: str, password_hash: str, role: str):
with get_conn() as conn:
conn.execute(
"INSERT INTO users(username, password_hash, role, created_at) VALUES (?,?,?,?)",
(username, password_hash, role, now_str()),
)
def get_user(username: str):
with get_conn() as conn:
cur = conn.execute("SELECT * FROM users WHERE username=?", (username,))
return cur.fetchone()
def get_all_users() -> List[Dict[str, Any]]:
with get_conn() as conn:
cur = conn.execute("SELECT id, username, role FROM users ORDER BY username")
return cur.fetchall()
def update_user_password(username: str, password_hash: str):
with get_conn() as conn:
conn.execute(
"UPDATE users SET password_hash = ? WHERE username = ?",
(password_hash, username),
)
|