demo / databases.py
VeuReu's picture
Upload 55 files
7449830
raw
history blame
22.9 kB
import os
import sqlite3
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
from statistics import median
from typing import Optional, Dict, Any, List, Tuple
# Reutilizamos la misma lógica que antes, pero centralizada en este módulo
DEFAULT_DB_PATH = None # set by set_db_path at runtime
# Flag global per decidir si es fa servir blockchain (AWS QLDB) per als esdeveniments
USE_BLOCKCHAIN_FOR_EVENTS = False
# Ruta a la base de dades de feedback agregat (separa de users.db)
FEEDBACK_DB_PATH = Path(__file__).resolve().parent / "temp" / "feedback.db"
# Ruta a la base de dades de captions per als scores
CAPTIONS_DB_PATH = Path(__file__).resolve().parent / "temp" / "captions.db"
# Ruta a la base de dades d'esdeveniments (events.db) a demo/temp
EVENTS_DB_PATH = Path(__file__).resolve().parent / "temp" / "events.db"
# Ruta a la base de dades de vídeos (videos.db) a demo/temp
VIDEOS_DB_PATH = Path(__file__).resolve().parent / "temp" / "videos.db"
def set_db_path(db_path: str):
global DEFAULT_DB_PATH
DEFAULT_DB_PATH = db_path
os.makedirs(os.path.dirname(db_path), exist_ok=True)
def set_blockchain_enabled(enabled: bool) -> None:
"""Activa o desactiva l'ús de blockchain per registrar esdeveniments.
Quan està desactivat (per defecte), els esdeveniments es registren a
demo/temp/events.db. Quan està activat, s'envien a aws_qldb.
"""
global USE_BLOCKCHAIN_FOR_EVENTS
USE_BLOCKCHAIN_FOR_EVENTS = bool(enabled)
def get_connection():
if not DEFAULT_DB_PATH:
raise ValueError("Database path not set. Call set_db_path(path) first.")
return sqlite3.connect(DEFAULT_DB_PATH)
@contextmanager
def get_conn(db_path: Optional[str] = None):
path = db_path or DEFAULT_DB_PATH
conn = sqlite3.connect(path, check_same_thread=False)
conn.row_factory = sqlite3.Row
try:
yield conn
conn.commit()
finally:
conn.close()
def init_schema():
with get_conn() as conn:
c = conn.cursor()
# (tus tablas existentes)
c.execute(
"""
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password_hash TEXT,
role TEXT NOT NULL,
created_at TEXT NOT NULL
);
"""
)
# Migraciones: asegurar columnas esperadas
try:
c.execute("PRAGMA table_info(users)")
cols = {row[1] for row in c.fetchall()} # set de nombres de columnas
if "password_hash" not in cols:
c.execute("ALTER TABLE users ADD COLUMN password_hash TEXT")
if "role" not in cols:
c.execute("ALTER TABLE users ADD COLUMN role TEXT NOT NULL DEFAULT 'verd'")
if "created_at" not in cols:
c.execute("ALTER TABLE users ADD COLUMN created_at TEXT NOT NULL DEFAULT ''")
except sqlite3.OperationalError:
pass
# Intento de limpieza de columna antigua si existiera (SQLite no permite DROP COLUMN en versiones antiguas)
try:
c.execute("ALTER TABLE users DROP COLUMN pw_hash;")
except sqlite3.OperationalError:
pass
# (opcional: tus otras tablas)
# Esquema per a demo/temp/events.db (registre d'esdeveniments)
EVENTS_DB_PATH.parent.mkdir(parents=True, exist_ok=True)
with sqlite3.connect(str(EVENTS_DB_PATH)) as econn:
ec = econn.cursor()
ec.execute(
"""
CREATE TABLE IF NOT EXISTS events (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT NOT NULL,
session TEXT,
ip TEXT,
user TEXT,
password TEXT,
phone TEXT,
action TEXT NOT NULL,
sha1sum TEXT,
visibility TEXT
);
"""
)
# Afegir columna visibility si la taula ja existia sense aquest camp
try:
ec.execute("ALTER TABLE events ADD COLUMN visibility TEXT")
except sqlite3.OperationalError:
# La columna ja existeix
pass
econn.commit()
# >>> TABLA PARA FEEDBACK DE AD (no depende de videos)
c.execute(
"""
CREATE TABLE IF NOT EXISTS feedback_ad (
id INTEGER PRIMARY KEY AUTOINCREMENT,
video_name TEXT NOT NULL, -- nombre de carpeta dentro de videos/completed
user_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE,
transcripcio INTEGER NOT NULL, -- 1..10
identificacio INTEGER NOT NULL, -- 1..10
localitzacions INTEGER NOT NULL, -- 1..10
activitats INTEGER NOT NULL, -- 1..10
narracions INTEGER NOT NULL, -- 1..10
expressivitat INTEGER NOT NULL, -- 1..10
comments TEXT,
created_at TEXT NOT NULL
);
"""
)
# Add column if it doesn't exist, for backwards compatibility
try:
c.execute(
"ALTER TABLE feedback_ad ADD COLUMN expressivitat INTEGER NOT NULL DEFAULT 7;"
)
except sqlite3.OperationalError:
pass # column already exists
def add_feedback_ad(
video_name: str,
user_id: int,
transcripcio: int,
identificacio: int,
localitzacions: int,
activitats: int,
narracions: int,
expressivitat: int,
comments: str | None,
):
with get_conn() as conn:
conn.execute(
"""INSERT INTO feedback_ad
(video_name, user_id, transcripcio, identificacio, localitzacions, activitats, narracions, expressivitat, comments, created_at)
VALUES (?,?,?,?,?,?,?,?,?,?)""",
(
video_name,
user_id,
transcripcio,
identificacio,
localitzacions,
activitats,
narracions,
expressivitat,
comments,
now_str(),
),
)
def get_feedback_ad_for_video(video_name: str):
with get_conn() as conn:
cur = conn.execute(
"""SELECT * FROM feedback_ad WHERE video_name=? ORDER BY created_at DESC""",
(video_name,),
)
return cur.fetchall()
def get_accessible_videos_for_session(session_id: str | None) -> List[str]:
"""Retorna els noms de vídeo accessibles per a una sessió.
Regles:
- Sempre inclou vídeos amb visibility='public' a videos.db.
- Afegeix vídeos per als quals el camp owner coincideix amb algun phone
registrat a events.db per a la mateixa session.
Args:
session_id: Identificador de sessió (st.session_state.session_id).
"""
# 1) Vídeos públics
public_videos: set[str] = set()
with _connect_videos_db() as vconn:
try:
for row in vconn.execute(
"SELECT DISTINCT video_name FROM videos WHERE visibility = 'public'"
):
public_videos.add(row["video_name"])
except sqlite3.OperationalError:
# Si la taula no existeix encara, no hi ha vídeos
return []
if not session_id:
return sorted(public_videos)
# 2) Telèfons associats a la sessió actual
phones: set[str] = set()
with _connect_events_db() as econn:
for row in econn.execute(
"SELECT DISTINCT phone FROM events WHERE session = ? AND phone IS NOT NULL AND phone != ''",
(session_id,),
):
phones.add(row["phone"])
if not phones:
return sorted(public_videos)
# 3) Vídeos amb owner associat a algun d'aquests telèfons
owner_videos: set[str] = set()
with _connect_videos_db() as vconn:
q_marks = ",".join("?" for _ in phones)
params: Tuple[Any, ...] = tuple(phones)
query = (
f"SELECT DISTINCT video_name FROM videos WHERE owner IN ({q_marks})"
)
for row in vconn.execute(query, params):
owner_videos.add(row["video_name"])
all_videos = public_videos | owner_videos
return sorted(all_videos)
def _connect_feedback_db() -> sqlite3.Connection:
"""Connexió directa a demo/data/feedback.db.
És independent de DEFAULT_DB_PATH perquè aquesta BD és específica de feedback
agregat importat des de engine.
"""
FEEDBACK_DB_PATH.parent.mkdir(parents=True, exist_ok=True)
conn = sqlite3.connect(str(FEEDBACK_DB_PATH))
conn.row_factory = sqlite3.Row
return conn
def _connect_captions_db() -> sqlite3.Connection:
"""Connexió a demo/data/captions.db i creació de la taula si cal.
Estructura:
- variable TEXT PRIMARY KEY (p.ex. "score_1")
- caption TEXT (etiqueta humana)
"""
CAPTIONS_DB_PATH.parent.mkdir(parents=True, exist_ok=True)
conn = sqlite3.connect(str(CAPTIONS_DB_PATH))
cur = conn.cursor()
cur.execute(
"""
CREATE TABLE IF NOT EXISTS captions (
variable TEXT PRIMARY KEY,
caption TEXT NOT NULL
);
"""
)
conn.commit()
return conn
def insert_demo_feedback_row(
*,
user: str,
session: str,
video_name: str,
version: str,
une_ad: str,
free_ad: str,
comments: str | None,
transcripcio: int,
identificacio: int,
localitzacions: int,
activitats: int,
narracions: int,
expressivitat: int,
) -> None:
"""Insereix una valoració detallada a demo/data/feedback.db.
Escala els sliders de 0-7 a 0-100 i desa els textos d'UNE i narració lliure.
Les columnes de sliders tenen per nom el caption del slider a la UI.
"""
# Escalat 0-7 -> 0-100
def scale(v: int) -> int:
v = max(0, min(7, int(v)))
return int(round(v * 100.0 / 7.0))
slider_values = {
"Precisió Descriptiva": scale(transcripcio),
"Sincronització Temporal": scale(identificacio),
"Claredat i Concisió": scale(localitzacions),
"Inclusió de Diàleg": scale(activitats),
"Contextualització": scale(narracions),
"Flux i Ritme de la Narració": scale(expressivitat),
}
ts = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
with _connect_feedback_db() as conn:
conn.execute(
"""
INSERT INTO feedback (
timestamp, user, session, video_name, version, une_ad, free_ad, comments,
score_1, score_2, score_3, score_4, score_5, score_6,
"Precisió Descriptiva",
"Sincronització Temporal",
"Claredat i Concisió",
"Inclusió de Diàleg",
"Contextualització",
"Flux i Ritme de la Narració"
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);
""",
(
ts,
user,
session,
video_name,
version,
une_ad,
free_ad,
comments or "",
slider_values["Precisió Descriptiva"],
slider_values["Sincronització Temporal"],
slider_values["Claredat i Concisió"],
slider_values["Inclusió de Diàleg"],
slider_values["Contextualització"],
slider_values["Flux i Ritme de la Narració"],
slider_values["Precisió Descriptiva"],
slider_values["Sincronització Temporal"],
slider_values["Claredat i Concisió"],
slider_values["Inclusió de Diàleg"],
slider_values["Contextualització"],
slider_values["Flux i Ritme de la Narració"],
),
)
def _connect_events_db() -> sqlite3.Connection:
"""Connexió directa a demo/temp/events.db.
Es fa independent de DEFAULT_DB_PATH per mantenir aquesta BD separada
de users.db, igual que feedback.db.
"""
EVENTS_DB_PATH.parent.mkdir(parents=True, exist_ok=True)
conn = sqlite3.connect(str(EVENTS_DB_PATH))
conn.row_factory = sqlite3.Row
return conn
def _connect_videos_db() -> sqlite3.Connection:
"""Connexió directa a demo/temp/videos.db.
Aquesta BD conté metadades dels vídeos (video_name, owner, visibility, sha1sum...).
"""
VIDEOS_DB_PATH.parent.mkdir(parents=True, exist_ok=True)
conn = sqlite3.connect(str(VIDEOS_DB_PATH))
conn.row_factory = sqlite3.Row
return conn
def log_event(
*,
session: str,
ip: str,
user: str,
password: str,
phone: str,
action: str,
sha1sum: str,
visibility: str | None = None,
timestamp: Optional[str] = None,
) -> None:
"""Insereix un registre a demo/temp/events.db.
- timestamp: si no s'especifica, es fa servir UTC "YYYY-MM-DD HH:MM:SS".
- session, ip, user, password, phone, sha1sum es guarden com a TEXT.
"""
ts = timestamp or datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
if not USE_BLOCKCHAIN_FOR_EVENTS:
# Mode per defecte: registrar en demo/data/events.db
with _connect_events_db() as conn:
conn.execute(
"""INSERT INTO events
(timestamp, session, ip, user, password, phone, action, sha1sum, visibility)
VALUES (?,?,?,?,?,?,?,?,?)""",
(
ts,
session or "",
ip or "",
user or "",
password or "",
phone or "",
action,
sha1sum or "",
visibility or "",
),
)
else:
# Mode blockchain: delegar a aws_qldb (simulat fins activació real)
try:
from aws_qldb import qldb_manager
payload = {
"timestamp": ts,
"session": session or "",
"ip": ip or "",
"user": user or "",
"password": password or "",
"phone": phone or "",
"action": action,
"sha1sum": sha1sum or "",
"visibility": visibility or "",
}
# Mètode específic per a esdeveniments generics (simulat)
if hasattr(qldb_manager, "record_event"):
qldb_manager.record_event(payload)
else:
# Fallback: registrar com a log simulat
print(f"[QLDB EVENTS - SIMULATED] {payload}")
except Exception as e:
# No interrompre el flux de l'aplicació per errors de blockchain
print(f"[QLDB EVENTS ERROR] No s'ha pogut registrar l'esdeveniment: {e}")
def get_feedback_video_stats(agg: str = "mitjana") -> List[Dict[str, Any]]:
"""Retorna estadístiques agregades per vídeo de demo/data/feedback.db.
Es basa exclusivament en les columnes numèriques score_1..score_6 (0-100).
agg pot ser:
- "mitjana": mitjana dels scores per vídeo.
- "mediana": mediana dels scores per vídeo.
- "inicial": primer registre (per timestamp) per vídeo.
- "actual": darrer registre (per timestamp) per vídeo.
"""
agg = (agg or "mitjana").lower()
with _connect_feedback_db() as conn:
cur = conn.execute(
"""
SELECT
video_name,
timestamp,
score_1,
score_2,
score_3,
score_4,
score_5,
score_6
FROM feedback
"""
)
rows = cur.fetchall()
by_video: Dict[str, List[Dict[str, Any]]] = {}
for row in rows:
vn = row["video_name"]
parsed_scores = [
row["score_1"],
row["score_2"],
row["score_3"],
row["score_4"],
row["score_5"],
row["score_6"],
]
enriched = {
"video_name": vn,
"timestamp": row["timestamp"],
"scores": parsed_scores,
}
by_video.setdefault(vn, []).append(enriched)
def parse_ts(ts: str) -> datetime:
# Format des d'init_feedback.py: "YYYY-MM-DD HH:MM:SS"
try:
return datetime.strptime(ts, "%Y-%m-%d %H:%M:%S")
except Exception:
return datetime.min
result: List[Dict[str, Any]] = []
for video_name, vrows in by_video.items():
if not vrows:
continue
# Ordenem per timestamp per als modes "inicial" i "actual"
vrows_sorted = sorted(vrows, key=lambda r: parse_ts(r["timestamp"]))
def agg_index(idx: int) -> Optional[float]:
vals = [r["scores"][idx] for r in vrows if r["scores"][idx] is not None]
if not vals:
return None
if agg == "mitjana":
return float(sum(vals) / len(vals))
if agg == "mediana":
return float(median(vals))
if agg == "inicial":
first = vrows_sorted[0]["scores"][idx]
return float(first) if first is not None else None
if agg == "actual":
last = vrows_sorted[-1]["scores"][idx]
return float(last) if last is not None else None
# fallback a mitjana si el mode no és reconegut
return float(sum(vals) / len(vals))
row_out: Dict[str, Any] = {
"video_name": video_name,
"n": len(vrows),
}
for i in range(6):
row_out[f"score_{i+1}"] = agg_index(i)
result.append(row_out)
# Ordenació per defecte alfabètica pel nom; l'ordre final es decidirà a la UI
result.sort(key=lambda r: r["video_name"])
return result
def _init_captions_from_eval() -> None:
"""Inicialitza captions.db agafant etiquetes des d'un eval.csv.
Per simplicitat, intentem llegir `demo/data/media/parella/MoE/eval.csv`.
Si no existeix o falla, es deixen etiquetes per defecte.
"""
base_demo = Path(__file__).resolve().parent
eval_path = base_demo / "data" / "media" / "parella" / "MoE" / "eval.csv"
default_labels = [f"score_{i}" for i in range(1, 7)]
labels = default_labels[:]
if eval_path.exists():
try:
import csv
with eval_path.open("r", encoding="utf-8") as f:
reader = csv.DictReader(f)
tmp: List[str] = []
for row in reader:
if len(tmp) >= 6:
break
name = (row.get("Caracteristica") or "").strip().strip('"')
if name:
tmp.append(name)
if tmp:
labels = tmp
while len(labels) < 6:
labels.append(default_labels[len(labels)])
labels = labels[:6]
except Exception:
pass
with _connect_captions_db() as conn:
cur = conn.cursor()
cur.execute("DELETE FROM captions")
for i in range(6):
cur.execute(
"INSERT OR REPLACE INTO captions (variable, caption) VALUES (?, ?)",
(f"score_{i+1}", labels[i]),
)
def get_feedback_score_labels() -> List[str]:
"""Retorna les etiquetes humanes per a score_1..score_6 des de captions.db.
Si captions.db és buit, s'intenta inicialitzar-lo a partir d'un eval.csv.
"""
default_labels = [f"score_{i}" for i in range(1, 7)]
with _connect_captions_db() as conn:
cur = conn.cursor()
cur.execute("SELECT variable, caption FROM captions ORDER BY variable")
rows = cur.fetchall()
if not rows:
# Inicialitzar des d'un eval.csv i tornar-ho a intentar
_init_captions_from_eval()
cur.execute("SELECT variable, caption FROM captions ORDER BY variable")
rows = cur.fetchall()
if not rows:
return default_labels
labels: List[str] = []
for _, caption in rows:
labels.append(caption)
while len(labels) < 6:
labels.append(default_labels[len(labels)])
return labels[:6]
def get_feedback_ad_stats():
# medias por vídeo y ranking
with get_conn() as conn:
cur = conn.execute(
"""
SELECT
video_name,
COUNT(*) AS n,
AVG(transcripcio) AS avg_transcripcio,
AVG(identificacio) AS avg_identificacio,
AVG(localitzacions) AS avg_localitzacions,
AVG(activitats) AS avg_activitats,
AVG(narracions) AS avg_narracions,
AVG(expressivitat) AS avg_expressivitat,
(AVG(transcripcio)+AVG(identificacio)+AVG(localitzacions)+AVG(activitats)+AVG(narracions)+AVG(expressivitat))/6.0 AS avg_global
FROM feedback_ad
GROUP BY video_name
ORDER BY avg_global DESC, n DESC;
"""
)
return cur.fetchall()
def now_str():
return datetime.utcnow().isoformat(timespec="seconds") + "Z"
# Users
def create_user(username: str, password_hash: str, role: str):
with get_conn() as conn:
conn.execute(
"INSERT INTO users(username, password_hash, role, created_at) VALUES (?,?,?,?)",
(username, password_hash, role, now_str()),
)
def get_user(username: str):
with get_conn() as conn:
cur = conn.execute("SELECT * FROM users WHERE username=?", (username,))
return cur.fetchone()
def get_all_users() -> List[Dict[str, Any]]:
with get_conn() as conn:
cur = conn.execute("SELECT id, username, role FROM users ORDER BY username")
return cur.fetchall()
def update_user_password(username: str, password_hash: str):
with get_conn() as conn:
conn.execute(
"UPDATE users SET password_hash = ? WHERE username = ?",
(password_hash, username),
)