engine / api.py
VeuReu's picture
Update api.py
9c102f1 verified
raw
history blame
58.4 kB
from __future__ import annotations
from fastapi import FastAPI, UploadFile, File,Query, Form, BackgroundTasks, HTTPException
from fastapi import Body
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from pathlib import Path
import shutil
import uvicorn
import json
import uuid
from datetime import datetime
from typing import Dict
from enum import Enum
import os
import yaml
import io
from video_processing import process_video_pipeline
from audio_tools import process_audio_for_video, extract_audio_ffmpeg, embed_voice_segments
from casting_loader import ensure_chroma, build_faces_index, build_voices_index
from narration_system import NarrationSystem
from llm_router import load_yaml, LLMRouter
from character_detection import detect_characters_from_video
from pipelines.audiodescription import generate as ad_generate
from storage.files.file_manager import FileManager
from storage.media_routers import router as media_router
app = FastAPI(title="Veureu Engine API", version="0.2.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
ROOT = Path("/tmp/veureu")
ROOT.mkdir(parents=True, exist_ok=True)
TEMP_ROOT = Path("/tmp/temp")
TEMP_ROOT.mkdir(parents=True, exist_ok=True)
VIDEOS_ROOT = Path("/tmp/data/videos")
VIDEOS_ROOT.mkdir(parents=True, exist_ok=True)
IDENTITIES_ROOT = Path("/tmp/characters")
IDENTITIES_ROOT.mkdir(parents=True, exist_ok=True)
# Sistema de jobs asíncronos
class JobStatus(str, Enum):
QUEUED = "queued"
PROCESSING = "processing"
DONE = "done"
FAILED = "failed"
jobs: Dict[str, dict] = {}
app.include_router(media_router)
def describe_image_with_svision(image_path: str, is_face: bool = True) -> tuple[str, str]:
"""
Llama al space svision para describir una imagen (usado en generación de AD).
Args:
image_path: Ruta absoluta a la imagen
is_face: True si es una cara, False si es una escena
Returns:
tuple (descripción_completa, nombre_abreviado)
"""
try:
from pathlib import Path as _P
import yaml
from llm_router import LLMRouter
# Cargar configuración
config_path = _P(__file__).parent / "config.yaml"
if not config_path.exists():
print(f"[svision] Config no encontrado: {config_path}")
return ("", "")
with open(config_path, 'r', encoding='utf-8') as f:
cfg = yaml.safe_load(f) or {}
router = LLMRouter(cfg)
# Contexto diferente para caras vs escenas
if is_face:
context = {
"task": "describe_person",
"instructions": "Descriu la persona en la imatge. Inclou: edat aproximada (jove/adult), gènere, característiques físiques notables (ulleres, barba, bigoti, etc.), expressió i vestimenta.",
"max_tokens": 256
}
else:
context = {
"task": "describe_scene",
"instructions": "Descriu aquesta escena breument en 2-3 frases: tipus de localització i elements principals.",
"max_tokens": 128
}
# Llamar a svision
descriptions = router.vision_describe([str(image_path)], context=context, model="salamandra-vision")
full_description = descriptions[0] if descriptions else ""
if not full_description:
return ("", "")
print(f"[svision] Descripció generada: {full_description[:100]}...")
return (full_description, "")
except Exception as e:
print(f"[svision] Error al descriure imatge: {e}")
import traceback
traceback.print_exc()
return ("", "")
def normalize_face_lighting(image):
"""
Normaliza el brillo de una imagen de cara usando técnicas combinadas:
1. CLAHE para ecualización adaptativa
2. Normalización de rango para homogeneizar brillo general
Esto reduce el impacto de diferentes condiciones de iluminación en los embeddings
y en la visualización de las imágenes.
Args:
image: Imagen BGR (OpenCV format)
Returns:
Imagen normalizada en el mismo formato
"""
import cv2
import numpy as np
# Paso 1: Convertir a LAB color space (más robusto para iluminación)
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
# Paso 2: Aplicar CLAHE (Contrast Limited Adaptive Histogram Equalization) al canal L
# Usar clipLimit más alto para normalización más agresiva
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
l_clahe = clahe.apply(l)
# Paso 3: Normalizar el rango del canal L para asegurar distribución uniforme
# Esto garantiza que todas las imágenes tengan un rango de brillo similar
l_min, l_max = l_clahe.min(), l_clahe.max()
if l_max > l_min:
# Estirar el histograma al rango completo [0, 255]
l_normalized = ((l_clahe - l_min) * 255.0 / (l_max - l_min)).astype(np.uint8)
else:
l_normalized = l_clahe
# Paso 4: Aplicar suavizado suave para reducir ruido introducido por la normalización
l_normalized = cv2.GaussianBlur(l_normalized, (3, 3), 0)
# Recombinar canales
lab_normalized = cv2.merge([l_normalized, a, b])
# Convertir de vuelta a BGR
normalized = cv2.cvtColor(lab_normalized, cv2.COLOR_LAB2BGR)
return normalized
def hierarchical_cluster_with_min_size(X, max_groups: int, min_cluster_size: int, sensitivity: float = 0.5) -> np.ndarray:
"""
Clustering jerárquico con silhouette score para encontrar automáticamente el mejor número de clusters.
Selecciona automáticamente el mejor número de clusters (hasta max_groups) usando silhouette score.
Filtra clusters con menos de min_cluster_size muestras (marcados como -1/ruido).
Args:
X: Array de embeddings (N, D)
max_groups: Número máximo de clusters a formar
min_cluster_size: Tamaño mínimo de cluster válido
sensitivity: Sensibilidad del clustering (0.0-1.0)
- 0.0 = muy agresivo (menos clusters)
- 0.5 = balanceado (recomendado)
- 1.0 = muy permisivo (más clusters)
Returns:
Array de labels (N,) donde -1 indica ruido
"""
import numpy as np
from scipy.cluster.hierarchy import linkage, fcluster
from sklearn.metrics import silhouette_score
from collections import Counter
if len(X) == 0:
return np.array([])
if len(X) < min_cluster_size:
# Si hay menos muestras que el mínimo, todo es ruido
return np.full(len(X), -1, dtype=int)
# Linkage usando average linkage (más flexible que ward, menos sensible a outliers)
# Esto ayuda a agrupar mejor la misma persona con diferentes ángulos/expresiones
Z = linkage(X, method='average', metric='cosine') # Cosine similarity para embeddings
# Encontrar el número óptimo de clusters usando silhouette score
best_n_clusters = 2
best_score = -1
# Probar diferentes números de clusters (de 2 a max_groups)
max_to_try = min(max_groups, len(X) - 1) # No puede haber más clusters que muestras
if max_to_try >= 2:
for n_clusters in range(2, max_to_try + 1):
trial_labels = fcluster(Z, t=n_clusters, criterion='maxclust') - 1
# Calcular cuántos clusters válidos tendríamos después del filtrado
trial_counts = Counter(trial_labels)
valid_clusters = sum(1 for count in trial_counts.values() if count >= min_cluster_size)
# Solo evaluar si hay al menos 2 clusters válidos
if valid_clusters >= 2:
try:
score = silhouette_score(X, trial_labels, metric='cosine')
# Penalización dinámica basada en sensibilidad:
# - sensitivity=0.0 → penalty=0.14 (muy agresivo, menos clusters)
# - sensitivity=0.5 → penalty=0.07 (balanceado, recomendado)
# - sensitivity=1.0 → penalty=0.01 (permisivo, más clusters)
penalty = 0.14 - (sensitivity * 0.13)
adjusted_score = score - (n_clusters * penalty)
if adjusted_score > best_score:
best_score = adjusted_score
best_n_clusters = n_clusters
except:
pass # Si falla el cálculo, ignorar esta configuración
# Usar el número óptimo de clusters encontrado
penalty = 0.14 - (sensitivity * 0.13)
print(f"Clustering óptimo: {best_n_clusters} clusters (de máximo {max_groups}), sensitivity={sensitivity:.2f}, penalty={penalty:.3f}, silhouette={best_score:.3f}")
labels = fcluster(Z, t=best_n_clusters, criterion='maxclust')
# fcluster devuelve labels 1-indexed, convertir a 0-indexed
labels = labels - 1
# Filtrar clusters pequeños
label_counts = Counter(labels)
filtered_labels = []
for lbl in labels:
if label_counts[lbl] >= min_cluster_size:
filtered_labels.append(lbl)
else:
filtered_labels.append(-1) # Ruido
return np.array(filtered_labels, dtype=int)
@app.get("/")
def root():
return {"ok": True, "service": "veureu-engine"}
@app.post("/process_video")
async def process_video(
video_file: UploadFile = File(...),
config_path: str = Form("config.yaml"),
out_root: str = Form("results"),
db_dir: str = Form("chroma_db"),
):
tmp_video = ROOT / video_file.filename
with tmp_video.open("wb") as f:
shutil.copyfileobj(video_file.file, f)
result = process_video_pipeline(str(tmp_video), config_path=config_path, out_root=out_root, db_dir=db_dir)
return JSONResponse(result)
@app.post("/create_initial_casting")
async def create_initial_casting(
background_tasks: BackgroundTasks,
video: UploadFile = File(...),
max_groups: int = Form(default=3),
min_cluster_size: int = Form(default=3),
face_sensitivity: float = Form(default=0.5),
voice_max_groups: int = Form(default=3),
voice_min_cluster_size: int = Form(default=3),
voice_sensitivity: float = Form(default=0.5),
max_frames: int = Form(default=100),
):
"""
Crea un job para procesar el vídeo de forma asíncrona usando clustering jerárquico.
Devuelve un job_id inmediatamente.
"""
# Guardar vídeo en carpeta de datos
video_name = Path(video.filename).stem
dst_video = VIDEOS_ROOT / f"{video_name}.mp4"
with dst_video.open("wb") as f:
shutil.copyfileobj(video.file, f)
# Crear job_id único
job_id = str(uuid.uuid4())
# Inicializar el job
jobs[job_id] = {
"id": job_id,
"status": JobStatus.QUEUED,
"video_path": str(dst_video),
"video_name": video_name,
"max_groups": int(max_groups),
"min_cluster_size": int(min_cluster_size),
"face_sensitivity": float(face_sensitivity),
"voice_max_groups": int(voice_max_groups),
"voice_min_cluster_size": int(voice_min_cluster_size),
"voice_sensitivity": float(voice_sensitivity),
"max_frames": int(max_frames),
"created_at": datetime.now().isoformat(),
"results": None,
"error": None
}
print(f"[{job_id}] Job creado para vídeo: {video_name}")
# Iniciar procesamiento en background
background_tasks.add_task(process_video_job, job_id)
# Devolver job_id inmediatamente
return {"job_id": job_id}
@app.get("/jobs/{job_id}/status")
def get_job_status(job_id: str):
"""
Devuelve el estado actual de un job.
El UI hace polling de este endpoint cada 5 segundos.
"""
if job_id not in jobs:
raise HTTPException(status_code=404, detail="Job not found")
job = jobs[job_id]
# Normalizar el estado a string
status_value = job["status"].value if isinstance(job["status"], JobStatus) else str(job["status"])
response = {"status": status_value}
# Incluir resultados si existen (evita condiciones de carrera)
if job.get("results") is not None:
response["results"] = job["results"]
# Incluir error si existe
if job.get("error"):
response["error"] = job["error"]
return response
@app.get("/files/{video_name}/{char_id}/{filename}")
def serve_character_file(video_name: str, char_id: str, filename: str):
"""
Sirve archivos estáticos de personajes (imágenes).
Ejemplo: /files/dif_catala_1/char1/representative.jpg
"""
# Las caras se guardan en /tmp/temp/<video>/characters/<char_id>/<filename>
file_path = TEMP_ROOT / video_name / "characters" / char_id / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
@app.get("/audio/{video_name}/{filename}")
def serve_audio_file(video_name: str, filename: str):
file_path = TEMP_ROOT / video_name / "clips" / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
def process_video_job(job_id: str):
"""
Procesa el vídeo de forma asíncrona.
Esta función se ejecuta en background.
"""
try:
job = jobs[job_id]
print(f"[{job_id}] Iniciando procesamiento...")
# Cambiar estado a processing
job["status"] = JobStatus.PROCESSING
video_path = job["video_path"]
video_name = job["video_name"]
max_groups = int(job.get("max_groups", 5))
min_cluster_size = int(job.get("min_cluster_size", 3))
face_sensitivity = float(job.get("face_sensitivity", 0.5))
v_max_groups = int(job.get("voice_max_groups", 5))
v_min_cluster = int(job.get("voice_min_cluster_size", 3))
voice_sensitivity = float(job.get("voice_sensitivity", 0.5))
# Crear estructura de carpetas
base = TEMP_ROOT / video_name
base.mkdir(parents=True, exist_ok=True)
print(f"[{job_id}] Directorio base: {base}")
# Detección de caras y embeddings (CPU), alineado con 'originales'
try:
print(f"[{job_id}] Iniciando detección de personajes (CPU, originales)...")
print(f"[{job_id}] *** Normalización de brillo ACTIVADA ***")
print(f"[{job_id}] - CLAHE adaptativo (clipLimit=3.0)")
print(f"[{job_id}] - Estiramiento de histograma")
print(f"[{job_id}] - Suavizado Gaussiano")
print(f"[{job_id}] Esto homogeneizará el brillo de todas las caras detectadas")
import cv2
import numpy as np
try:
import face_recognition # CPU
_use_fr = True
print(f"[{job_id}] face_recognition disponible: CPU")
except Exception:
face_recognition = None # type: ignore
_use_fr = False
print(f"[{job_id}] face_recognition no disponible. Intentando DeepFace fallback.")
try:
from deepface import DeepFace # type: ignore
except Exception:
DeepFace = None # type: ignore
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise RuntimeError("No se pudo abrir el vídeo para extracción de caras")
fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0)
max_samples = job.get("max_frames", 100)
# Índices de frames equiespaciados
if total_frames > 0:
frame_indices = sorted(set(np.linspace(0, max(0, total_frames - 1), num=min(max_samples, max(1, total_frames)), dtype=int).tolist()))
else:
frame_indices = []
print(f"[{job_id}] Total frames: {total_frames}, FPS: {fps:.2f}, Muestreando {len(frame_indices)} frames equiespaciados (máx {max_samples})")
# Salidas
faces_root = base / "faces_raw"
faces_root.mkdir(parents=True, exist_ok=True)
embeddings: list[list[float]] = []
crops_meta: list[dict] = []
saved_count = 0
frames_processed = 0
frames_with_faces = 0
for frame_idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, int(frame_idx))
ret2, frame = cap.read()
if not ret2:
continue
frames_processed += 1
# Normalizar iluminación antes de procesar
frame_normalized = normalize_face_lighting(frame)
rgb = cv2.cvtColor(frame_normalized, cv2.COLOR_BGR2RGB)
if _use_fr and face_recognition is not None:
boxes = face_recognition.face_locations(rgb, model="hog") # CPU HOG
encs = face_recognition.face_encodings(rgb, boxes)
if boxes:
frames_with_faces += 1
print(f"[{job_id}] Frame {frame_idx}: {len(boxes)} cara(s) detectada(s) con face_recognition")
for (top, right, bottom, left), e in zip(boxes, encs):
crop = frame_normalized[top:bottom, left:right]
if crop.size == 0:
continue
fn = f"face_{frame_idx:06d}_{saved_count:03d}.jpg"
cv2.imwrite(str(faces_root / fn), crop)
# Normalizar embedding
e = np.array(e, dtype=float)
e = e / (np.linalg.norm(e) + 1e-9)
embeddings.append(e.astype(float).tolist())
crops_meta.append({
"file": fn,
"frame": frame_idx,
"box": [int(top), int(right), int(bottom), int(left)],
})
saved_count += 1
else:
# DeepFace fallback con detección de bounding boxes vía Haar Cascade (OpenCV)
if DeepFace is None:
pass
else:
try:
gray = cv2.cvtColor(frame_normalized, cv2.COLOR_BGR2GRAY)
try:
haar_path = getattr(cv2.data, 'haarcascades', None) or ''
face_cascade = cv2.CascadeClassifier(os.path.join(haar_path, 'haarcascade_frontalface_default.xml'))
except Exception:
face_cascade = None
boxes_haar = []
if face_cascade is not None and not face_cascade.empty():
# Parámetros más estrictos para evitar falsos positivos
faces_haar = face_cascade.detectMultiScale(gray, scaleFactor=1.08, minNeighbors=5, minSize=(50, 50))
for (x, y, w, h) in faces_haar:
top, left, bottom, right = max(0, y), max(0, x), min(frame.shape[0], y+h), min(frame.shape[1], x+w)
boxes_haar.append((top, right, bottom, left))
# Si Haar no detecta nada, intentar con DeepFace directamente
if not boxes_haar:
try:
tmp_detect = faces_root / f"detect_{frame_idx:06d}.jpg"
cv2.imwrite(str(tmp_detect), frame_normalized)
detect_result = DeepFace.extract_faces(img_path=str(tmp_detect), detector_backend='opencv', enforce_detection=False)
for det in detect_result:
facial_area = det.get('facial_area', {})
if facial_area:
x, y, w, h = facial_area.get('x', 0), facial_area.get('y', 0), facial_area.get('w', 0), facial_area.get('h', 0)
# Validar que es un bbox real, no el frame completo
# Si el bbox es prácticamente el frame completo, descartarlo
is_full_frame = (x <= 5 and y <= 5 and w >= frame.shape[1] - 10 and h >= frame.shape[0] - 10)
# Bbox mínimo de 50x50 para filtrar falsos positivos pequeños
if w > 50 and h > 50 and not is_full_frame:
top, left, bottom, right = max(0, y), max(0, x), min(frame.shape[0], y+h), min(frame.shape[1], x+w)
boxes_haar.append((top, right, bottom, left))
tmp_detect.unlink(missing_ok=True)
except Exception as _e_detect:
print(f"[{job_id}] Frame {frame_idx}: DeepFace extract_faces error: {_e_detect}")
if boxes_haar:
frames_with_faces += 1
print(f"[{job_id}] Frame {frame_idx}: {len(boxes_haar)} cara(s) detectada(s) con Haar/DeepFace")
for (top, right, bottom, left) in boxes_haar:
crop = frame_normalized[top:bottom, left:right]
if crop.size == 0:
continue
fn = f"face_{frame_idx:06d}_{saved_count:03d}.jpg"
crop_path = faces_root / fn
cv2.imwrite(str(crop_path), crop)
reps = DeepFace.represent(img_path=str(crop_path), model_name="Facenet512", enforce_detection=False)
for r in (reps or []):
emb = r.get("embedding") if isinstance(r, dict) else r
if emb is None:
continue
emb = np.array(emb, dtype=float)
emb = emb / (np.linalg.norm(emb) + 1e-9)
embeddings.append(emb.astype(float).tolist())
crops_meta.append({
"file": fn,
"frame": frame_idx,
"box": [int(top), int(right), int(bottom), int(left)],
})
saved_count += 1
except Exception as _e_df:
print(f"[{job_id}] DeepFace fallback error: {_e_df}")
cap.release()
print(f"[{job_id}] ✓ Frames procesados: {frames_processed}/{len(frame_indices)}")
print(f"[{job_id}] ✓ Frames con caras: {frames_with_faces}")
print(f"[{job_id}] ✓ Caras detectadas (embeddings): {len(embeddings)}")
# Clustering jerárquico de caras
if embeddings:
Xf = np.array(embeddings)
labels = hierarchical_cluster_with_min_size(Xf, max_groups, min_cluster_size, face_sensitivity).tolist()
print(f"[{job_id}] Clustering jerárquico de caras: {len(set([l for l in labels if l >= 0]))} clusters")
else:
labels = []
# Construir carpetas por clúster con validación DeepFace
from face_classifier import validate_and_classify_face, get_random_catalan_name_by_gender, FACE_CONFIDENCE_THRESHOLD
characters_validated = []
cluster_map: dict[int, list[int]] = {}
for i, lbl in enumerate(labels):
if isinstance(lbl, int) and lbl >= 0:
cluster_map.setdefault(lbl, []).append(i)
chars_dir = base / "characters"
chars_dir.mkdir(parents=True, exist_ok=True)
import shutil as _sh
original_cluster_count = len(cluster_map)
print(f"[{job_id}] Procesando {original_cluster_count} clusters detectados...")
for ci, idxs in sorted(cluster_map.items(), key=lambda x: x[0]):
char_id = f"char_{ci:02d}"
# PASO 1: Ordenar caras por área del bounding box (mejor calidad)
face_detections = []
for j in idxs:
meta = crops_meta[j]
box = meta.get("box", [0, 0, 0, 0])
if len(box) >= 4:
top, right, bottom, left = box
w = abs(right - left)
h = abs(bottom - top)
area_score = w * h
else:
area_score = 0
face_detections.append({
'index': j,
'score': area_score,
'file': meta['file'],
'box': box
})
# Ordenar por score descendente
face_detections_sorted = sorted(
face_detections,
key=lambda x: x['score'],
reverse=True
)
if not face_detections_sorted:
print(f"[{job_id}] [VALIDATION] ✗ Cluster {char_id}: sense deteccions, eliminant")
continue
# PASO 2: Validar SOLO la mejor cara del cluster
best_face = face_detections_sorted[0]
best_face_path = faces_root / best_face['file']
print(f"[{job_id}] [VALIDATION] Cluster {char_id}: validant millor cara (bbox_area={best_face['score']:.0f}px²)")
print(f"[{job_id}] [VALIDATION] Cluster {char_id}: millor cara path={best_face_path}")
print(f"[{job_id}] [VALIDATION] ▶▶▶ CRIDANT validate_and_classify_face() ◀◀◀")
validation = validate_and_classify_face(str(best_face_path))
print(f"[{job_id}] [VALIDATION] ▶▶▶ validate_and_classify_face() RETORNAT ◀◀◀")
if not validation:
print(f"[{job_id}] [VALIDATION] ✗ Cluster {char_id}: error en validació DeepFace, eliminant cluster")
continue
# Mostrar resultados detallados de DeepFace
print(f"[{job_id}] [DEEPFACE RESULT] Cluster {char_id}:")
print(f"[{job_id}] - is_valid_face: {validation['is_valid_face']}")
print(f"[{job_id}] - face_confidence: {validation['face_confidence']:.3f}")
print(f"[{job_id}] - man_prob: {validation['man_prob']:.3f}")
print(f"[{job_id}] - woman_prob: {validation['woman_prob']:.3f}")
print(f"[{job_id}] - gender_diff: {abs(validation['man_prob'] - validation['woman_prob']):.3f}")
print(f"[{job_id}] - gender_assigned: {validation['gender']}")
print(f"[{job_id}] - gender_confidence: {validation['gender_confidence']:.3f}")
# PASO 3: Verificar si és una cara vàlida
if not validation['is_valid_face'] or validation['face_confidence'] < FACE_CONFIDENCE_THRESHOLD:
print(f"[{job_id}] [VALIDATION] ✗ Cluster {char_id}: NO ES UNA CARA VÁLIDA (face_confidence={validation['face_confidence']:.3f} < threshold={FACE_CONFIDENCE_THRESHOLD}), eliminant tot el clúster")
continue
# PASO 4: És una cara vàlida! Crear carpeta
out_dir = chars_dir / char_id
out_dir.mkdir(parents=True, exist_ok=True)
# PASO 5: Limitar caras a mostrar (primera meitat + 1)
total_faces = len(face_detections_sorted)
max_faces_to_show = (total_faces // 2) + 1
face_detections_limited = face_detections_sorted[:max_faces_to_show]
# Copiar solo las caras limitadas
files = []
face_files_urls = []
for k, face_det in enumerate(face_detections_limited):
fname = face_det['file']
src = faces_root / fname
dst = out_dir / fname
try:
_sh.copy2(src, dst)
files.append(fname)
face_files_urls.append(f"/files/{video_name}/{char_id}/{fname}")
except Exception:
pass
# Imagen representativa (la mejor)
rep = files[0] if files else None
if rep:
rep_src = out_dir / rep
rep_dst = out_dir / "representative.jpg"
try:
_sh.copy2(rep_src, rep_dst)
except Exception:
pass
# PASO 6: Generar nombre según género
gender = validation['gender']
character_name = get_random_catalan_name_by_gender(gender, char_id)
print(f"[{job_id}] [NAME GENERATION] Cluster {char_id}:")
print(f"[{job_id}] - Gender detectado: {gender}")
print(f"[{job_id}] - Nombre asignado: {character_name}")
print(f"[{job_id}] - Seed usado: {char_id}")
character_data = {
"id": char_id,
"name": character_name,
"gender": gender,
"gender_confidence": validation['gender_confidence'],
"face_confidence": validation['face_confidence'],
"man_prob": validation['man_prob'],
"woman_prob": validation['woman_prob'],
"folder": str(out_dir),
"num_faces": len(files),
"total_faces_detected": total_faces,
"image_url": f"/files/{video_name}/{char_id}/representative.jpg" if rep else "",
"face_files": face_files_urls,
}
characters_validated.append(character_data)
print(f"[{job_id}] [VALIDATION] ✓ Cluster {char_id}: CARA VÁLIDA!")
print(f"[{job_id}] Nombre: {character_name}")
print(f"[{job_id}] Género: {gender} (man={validation['man_prob']:.3f}, woman={validation['woman_prob']:.3f})")
print(f"[{job_id}] Confianza género: {validation['gender_confidence']:.3f}")
print(f"[{job_id}] Confianza cara: {validation['face_confidence']:.3f}")
print(f"[{job_id}] Caras mostradas: {len(files)}/{total_faces}")
print(f"[{job_id}] Imagen representativa: {best_face_path.name}")
# Estadístiques finals
eliminated_count = original_cluster_count - len(characters_validated)
print(f"[{job_id}] [VALIDATION] Total: {len(characters_validated)} clústers vàlids "
f"(eliminats {eliminated_count} falsos positius)")
characters = characters_validated
# Escribir analysis.json compatible con 'originales'
analysis = {
"caras": [{"embeddings": e} for e in embeddings],
"voices": [],
"escenas": [],
}
analysis_path = str(base / "analysis.json")
with open(analysis_path, "w", encoding="utf-8") as f:
json.dump(analysis, f, ensure_ascii=False)
face_labels = labels
num_face_embeddings = len(embeddings)
print(f"[{job_id}] Personajes detectados: {len(characters)}")
for char in characters:
print(f"[{job_id}] - {char['name']}: {char['num_faces']} caras")
# Enriquecer info de personajes con listado real de imágenes disponibles
try:
import glob, os
for ch in characters:
folder = ch.get("folder")
face_files = []
if folder and os.path.isdir(folder):
# soportar patrones face_* y extensiones jpg/png
patterns = ["face_*.jpg", "face_*.png"]
files = []
for pat in patterns:
files.extend(glob.glob(os.path.join(folder, pat)))
# si no hay face_*, tomar cualquier jpg/png para no dejar vacío
if not files:
files.extend(glob.glob(os.path.join(folder, "*.jpg")))
files.extend(glob.glob(os.path.join(folder, "*.png")))
# normalizar nombres de fichero relativos
face_files = sorted({os.path.basename(p) for p in files})
# Garantizar que representative.(jpg|png) esté el primero si existe
for rep_name in ("representative.jpg", "representative.png"):
rep_path = os.path.join(folder, rep_name)
if os.path.exists(rep_path):
if rep_name in face_files:
face_files.remove(rep_name)
face_files.insert(0, rep_name)
ch["face_files"] = face_files
# Ajustar num_faces si hay discrepancia
if face_files:
ch["num_faces"] = len(face_files)
except Exception as _e:
print(f"[{job_id}] WARN - No se pudo enumerar face_files: {_e}")
# Procesamiento de audio: diarización, ASR y embeddings de voz
try:
cfg = load_yaml("config.yaml")
audio_segments, srt_unmod, full_txt, diar_info, connection_logs = process_audio_for_video(video_path, base, cfg, voice_collection=None)
# Loggear en consola del engine los eventos de conexión
try:
for ev in (connection_logs or []):
msg = ev.get("message") if isinstance(ev, dict) else None
if msg:
print(f"[{job_id}] {msg}")
except Exception:
pass
except Exception as e_audio:
import traceback
print(f"[{job_id}] WARN - Audio pipeline failed: {e_audio}\n{traceback.format_exc()}")
audio_segments, srt_unmod, full_txt = [], None, ""
diar_info = {"diarization_ok": False, "error": str(e_audio)}
connection_logs = []
# Fallback: si no hay segmentos de audio, crear uno mínimo del audio completo
if not audio_segments:
try:
from pathlib import Path as _P
from pydub import AudioSegment as _AS
wav_out = extract_audio_ffmpeg(video_path, base / f"{_P(video_path).stem}.wav", sr=16000)
audio = _AS.from_wav(wav_out)
clips_dir = base / "clips"
clips_dir.mkdir(parents=True, exist_ok=True)
cp = clips_dir / "segment_000.wav"
audio.export(cp, format="wav")
emb_list = embed_voice_segments([str(cp)])
audio_segments = [{
"segment": 0,
"start": 0.0,
"end": float(len(audio) / 1000.0),
"speaker": "SPEAKER_00",
"text": "",
"voice_embedding": emb_list[0] if emb_list else [],
"clip_path": str(cp),
"lang": "ca",
"lang_prob": 1.0,
}]
except Exception as _efb:
print(f"[{job_id}] WARN - Audio minimal fallback failed: {_efb}")
# Clustering jerárquico de voces sobre embeddings válidos
import numpy as np
voice_embeddings = [seg.get("voice_embedding") for seg in audio_segments if seg.get("voice_embedding")]
if voice_embeddings:
try:
Xv = np.array(voice_embeddings)
v_labels = hierarchical_cluster_with_min_size(Xv, v_max_groups, v_min_cluster, voice_sensitivity).tolist()
print(f"[{job_id}] Clustering jerárquico de voz: {len(set([l for l in v_labels if l >= 0]))} clusters")
except Exception as _e:
print(f"[{job_id}] WARN - Voice clustering failed: {_e}")
v_labels = []
else:
v_labels = []
# Guardar resultados primero y luego marcar como completado (evita carreras)
job["results"] = {
"characters": characters,
"num_characters": len(characters),
"analysis_path": analysis_path,
"base_dir": str(base),
"face_labels": face_labels,
"num_face_embeddings": num_face_embeddings,
"audio_segments": audio_segments,
"srt_unmodified": srt_unmod,
"full_transcription": full_txt,
"voice_labels": v_labels,
"num_voice_embeddings": len(voice_embeddings),
"diarization_info": diar_info,
}
job["status"] = JobStatus.DONE
# Log resumido sin embeddings
print(f"[{job_id}] ✓ Resultados guardados:")
print(f"[{job_id}] - Personatges: {len(characters)}")
print(f"[{job_id}] - Segments d'àudio: {len(audio_segments)}")
print(f"[{job_id}] - Face embeddings: {num_face_embeddings}")
print(f"[{job_id}] - Voice embeddings: {len(voice_embeddings)}")
except Exception as e_detect:
# Si falla la detección, intentar modo fallback
import traceback
print(f"[{job_id}] ✗ Error en detección: {e_detect}")
print(f"[{job_id}] Traceback: {traceback.format_exc()}")
print(f"[{job_id}] Usando modo fallback (carpetas vacías)")
# Crear carpetas básicas como fallback
for sub in ("sources", "faces", "voices", "backgrounds"):
(base / sub).mkdir(parents=True, exist_ok=True)
# Guardar resultados de fallback y luego marcar como completado
job["results"] = {
"characters": [],
"num_characters": 0,
"temp_dirs": {
"sources": str(base / "sources"),
"faces": str(base / "faces"),
"voices": str(base / "voices"),
"backgrounds": str(base / "backgrounds"),
},
"warning": f"Detección falló, usando modo fallback: {str(e_detect)}"
}
job["status"] = JobStatus.DONE
print(f"[{job_id}] ✓ Job completado exitosamente")
except Exception as e:
import traceback
print(f"[{job_id}] ✗ Error inesperado: {e}")
try:
job = jobs.get(job_id)
if job is not None:
job["status"] = JobStatus.FAILED
job["error"] = str(e)
except Exception:
pass
print(f"[{job_id}] Traceback: {traceback.format_exc()}")
@app.post("/generate_audiodescription")
async def generate_audiodescription(video: UploadFile = File(...)):
try:
import uuid
job_id = str(uuid.uuid4())
vid_name = video.filename or f"video_{job_id}.mp4"
base = TEMP_ROOT / Path(vid_name).stem
base.mkdir(parents=True, exist_ok=True)
# Save temp mp4
video_path = base / vid_name
with open(video_path, "wb") as f:
f.write(await video.read())
# Run MVP pipeline
result = ad_generate(str(video_path), base)
return {
"status": "done",
"results": {
"une_srt": result.get("une_srt", ""),
"free_text": result.get("free_text", ""),
"artifacts": result.get("artifacts", {}),
},
}
except Exception as e:
import traceback
print(f"/generate_audiodescription error: {e}\n{traceback.format_exc()}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/load_casting")
async def load_casting(
faces_dir: str = Form("identities/faces"),
voices_dir: str = Form("identities/voices"),
db_dir: str = Form("chroma_db"),
drop_collections: bool = Form(False),
):
client = ensure_chroma(Path(db_dir))
n_faces = build_faces_index(Path(faces_dir), client, collection_name="index_faces", drop=drop_collections)
n_voices = build_voices_index(Path(voices_dir), client, collection_name="index_voices", drop=drop_collections)
return {"ok": True, "faces": n_faces, "voices": n_voices}
@app.post("/finalize_casting")
async def finalize_casting(
payload: dict = Body(...),
):
"""
Consolidate selected face and voice clusters into identities directories and build indices.
Expected payload:
{
"video_name": str,
"base_dir": str, # engine temp base for this video
"characters": [
{"id": "char1", "name": "Nom", "folder": "/tmp/temp/<video>/char1", "kept_files": ["representative.jpg", ...], "description": "..."}, ...
],
"voice_clusters": [
{"label": 0, "name": "SPEAKER_00", "clips": ["segment_000.wav", ...]}, ...
]
}
"""
import os
import shutil
from pathlib import Path as _P
video_name = payload.get("video_name")
base_dir = payload.get("base_dir")
characters = payload.get("characters", []) or []
voice_clusters = payload.get("voice_clusters", []) or []
if not video_name or not base_dir:
raise HTTPException(status_code=400, detail="Missing video_name or base_dir")
faces_out = IDENTITIES_ROOT / video_name / "faces"
voices_out = IDENTITIES_ROOT / video_name / "voices"
faces_out.mkdir(parents=True, exist_ok=True)
voices_out.mkdir(parents=True, exist_ok=True)
# Consolidate faces per character name (merge same names)
for ch in characters:
ch_name = (ch.get("name") or "Unknown").strip() or "Unknown"
ch_folder = ch.get("folder")
kept = ch.get("kept_files") or []
if not ch_folder or not os.path.isdir(ch_folder):
continue
dst_dir = faces_out / ch_name
dst_dir.mkdir(parents=True, exist_ok=True)
for fname in kept:
src = _P(ch_folder) / fname
if src.exists() and src.is_file():
try:
shutil.copy2(src, dst_dir / fname)
except Exception:
pass
# Consolidate voices per cluster name
clips_dir = _P(base_dir) / "clips"
for vc in voice_clusters:
v_name = (vc.get("name") or f"SPEAKER_{int(vc.get('label',0)):02d}").strip()
dst_dir = voices_out / v_name
dst_dir.mkdir(parents=True, exist_ok=True)
for wav in (vc.get("clips") or []):
src = clips_dir / wav
if src.exists() and src.is_file():
try:
shutil.copy2(src, dst_dir / wav)
except Exception:
pass
# Build indices using casting_loader helpers
db_dir = IDENTITIES_ROOT / video_name / "chroma_db"
client = ensure_chroma(db_dir)
n_faces = build_faces_index(faces_out, client, collection_name="index_faces", deepface_model='Facenet512', drop=True)
n_voices = build_voices_index(voices_out, client, collection_name="index_voices", drop=True)
# Summary of identities
face_identities = sorted([p.name for p in faces_out.iterdir() if p.is_dir()]) if faces_out.exists() else []
voice_identities = sorted([p.name for p in voices_out.iterdir() if p.is_dir()]) if voices_out.exists() else []
return {
"ok": True,
"video_name": video_name,
"faces_dir": str(faces_out),
"voices_dir": str(voices_out),
"db_dir": str(db_dir),
"n_faces_embeddings": n_faces,
"n_voices_embeddings": n_voices,
"face_identities": face_identities,
"voice_identities": voice_identities,
}
@app.get("/files_scene/{video_name}/{scene_id}/{filename}")
def serve_scene_file(video_name: str, scene_id: str, filename: str):
file_path = TEMP_ROOT / video_name / "scenes" / scene_id / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
@app.post("/detect_scenes")
async def detect_scenes(
video: UploadFile = File(...),
max_groups: int = Form(default=3),
min_cluster_size: int = Form(default=3),
scene_sensitivity: float = Form(default=0.5),
frame_interval_sec: float = Form(default=0.5),
):
"""
Detecta clústers d'escenes mitjançant clustering jeràrquic d'histogrames de color.
Retorna una llista de scene_clusters estructurada de forma similar a characters.
"""
import cv2
import numpy as np
# Guardar el vídeo temporalment
video_name = Path(video.filename).stem
dst_video = VIDEOS_ROOT / f"{video_name}.mp4"
with dst_video.open("wb") as f:
shutil.copyfileobj(video.file, f)
cap = cv2.VideoCapture(str(dst_video))
if not cap.isOpened():
raise HTTPException(status_code=400, detail="Cannot open video")
fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
step = max(1, int(frame_interval_sec * fps))
frames = []
metas = []
idx = 0
while True:
ret = cap.grab()
if not ret:
break
if idx % step == 0:
ret2, frame = cap.retrieve()
if not ret2:
break
# Reduir mida per estabilitat i càlcul ràpid
small = cv2.resize(frame, (160, 90))
hsv = cv2.cvtColor(small, cv2.COLOR_BGR2HSV)
# Histograma per canal
h_hist = cv2.calcHist([hsv],[0],None,[32],[0,180]).flatten()
s_hist = cv2.calcHist([hsv],[1],None,[32],[0,256]).flatten()
v_hist = cv2.calcHist([hsv],[2],None,[32],[0,256]).flatten()
hist = np.concatenate([h_hist, s_hist, v_hist])
hist = hist / (np.linalg.norm(hist) + 1e-8)
frames.append(hist)
metas.append({"index": idx, "time_sec": idx/float(fps)})
idx += 1
cap.release()
if not frames:
return {"scene_clusters": []}
X = np.array(frames)
labels = hierarchical_cluster_with_min_size(X, max_groups, min_cluster_size, scene_sensitivity).tolist()
initial_clusters = len(set([l for l in labels if l >= 0]))
print(f"Scene clustering jeràrquic inicial: {initial_clusters} clusters")
# Agrupar per etiqueta (>=0)
clusters = {}
for i, lbl in enumerate(labels):
if lbl is None or lbl < 0:
continue
clusters.setdefault(int(lbl), []).append(i)
# VALIDACIÓ MILLORADA: Fusionar clusters molt similars de forma més agressiva
# Calcular centroides (histograma promig de cada cluster)
centroids = {}
for lbl, idxs in clusters.items():
cluster_histograms = X[idxs]
centroids[lbl] = np.mean(cluster_histograms, axis=0)
print(f"[SCENE VALIDATION] Validant similaritat entre {len(centroids)} clusters...")
# Thresholds més agressius per fusionar escenes similars
SIMILARITY_THRESHOLD = 0.25 # Aumentado de 0.15 a 0.25 (fusiona más)
CORRELATION_THRESHOLD = 0.85 # Correlación mínima para considerar similares
# Calcular matriu de distàncies i correlacions entre centroides
cluster_labels = sorted(centroids.keys())
similarities = {}
for i, lbl1 in enumerate(cluster_labels):
for lbl2 in cluster_labels[i+1:]:
# Distancia euclidiana (normalizada)
dist = np.linalg.norm(centroids[lbl1] - centroids[lbl2])
# Correlación de Pearson entre histogramas
corr = np.corrcoef(centroids[lbl1], centroids[lbl2])[0, 1]
# Son similares si:
# - Distancia baja (< threshold) O
# - Correlación alta (> threshold)
are_similar = (dist < SIMILARITY_THRESHOLD) or (corr > CORRELATION_THRESHOLD)
similarities[(lbl1, lbl2)] = {
'distance': dist,
'correlation': corr,
'similar': are_similar
}
if are_similar:
print(f"[SCENE VALIDATION] Clusters {lbl1} i {lbl2} són similars: "
f"dist={dist:.3f} (threshold={SIMILARITY_THRESHOLD}), "
f"corr={corr:.3f} (threshold={CORRELATION_THRESHOLD})")
# Union-Find para fusionar clusters transitivamente
# Si A~B y B~C, entonces A~B~C (todos en el mismo grupo)
parent = {lbl: lbl for lbl in cluster_labels}
def find(x):
if parent[x] != x:
parent[x] = find(parent[x]) # Path compression
return parent[x]
def union(x, y):
root_x = find(x)
root_y = find(y)
if root_x != root_y:
parent[root_y] = root_x
# Fusionar todos los clusters similares
fusion_count = 0
for (lbl1, lbl2), sim in similarities.items():
if sim['similar']:
union(lbl1, lbl2)
fusion_count += 1
# Aplicar fusió als clusters
new_clusters = {}
for lbl, idxs in clusters.items():
root = find(lbl)
if root not in new_clusters:
new_clusters[root] = []
new_clusters[root].extend(idxs)
# Reordenar labels para que sean consecutivos
final_clusters_dict = {}
for i, (root, idxs) in enumerate(sorted(new_clusters.items())):
final_clusters_dict[i] = idxs
clusters = final_clusters_dict
final_clusters = len(clusters)
eliminated = initial_clusters - final_clusters
print(f"[SCENE VALIDATION] ===== RESULTADO =====")
print(f"[SCENE VALIDATION] Clusters inicials: {initial_clusters}")
print(f"[SCENE VALIDATION] Fusions realitzades: {fusion_count}")
print(f"[SCENE VALIDATION] Clusters finals: {final_clusters}")
print(f"[SCENE VALIDATION] Clusters eliminats (fusionats): {eliminated}")
print(f"[SCENE VALIDATION] Reducció: {(eliminated/initial_clusters*100):.1f}%")
print(f"[SCENE VALIDATION] =======================")
# Escriure imatges representatives per a cada clúster
base = TEMP_ROOT / video_name / "scenes"
base.mkdir(parents=True, exist_ok=True)
scene_list = []
cap = cv2.VideoCapture(str(dst_video))
for lbl, idxs in sorted(clusters.items(), key=lambda x: x[0]):
scene_id = f"scene_{int(lbl):02d}"
out_dir = base / scene_id
out_dir.mkdir(parents=True, exist_ok=True)
frame_files = []
# Guardar fins a 12 frames per clúster
for k, fi in enumerate(idxs[:12]):
frame_num = metas[fi]["index"]
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
ret2, frame = cap.read()
if not ret2:
continue
fn = f"frame_{k:03d}.jpg"
cv2.imwrite(str(out_dir / fn), frame)
frame_files.append(fn)
# Representative
rep = frame_files[0] if frame_files else None
image_url = f"/files_scene/{video_name}/{scene_id}/{rep}" if rep else ""
# Llamar a svision para describir la escena representativa
scene_description = ""
scene_name = f"Escena {lbl+1}"
if rep:
rep_full_path = out_dir / rep
if rep_full_path.exists():
print(f"Llamando a svision para describir {scene_id}...")
try:
scene_description, scene_name = describe_image_with_svision(str(rep_full_path), is_face=False)
if not scene_name:
scene_name = f"Escena {lbl+1}"
# Si tenemos descripción, generar nombre corto con schat
if scene_description:
print(f"Llamando a schat para generar nombre corto de {scene_id}...")
try:
# Usar LLMRouter para llamar a schat
config_path = os.getenv("CONFIG_YAML", "config.yaml")
if os.path.exists(config_path):
with open(config_path, 'r', encoding='utf-8') as f:
cfg = yaml.safe_load(f) or {}
router = LLMRouter(cfg)
prompt = f"Basant-te en aquesta descripció d'una escena, genera un nom curt de menys de 3 paraules que la resumeixi:\n\n{scene_description}\n\nNom de l'escena:"
short_name = router.instruct(
prompt=prompt,
system="Ets un assistent que genera noms curts i descriptius per a escenes. Respon NOMÉS amb el nom, sense explicacions.",
model="salamandra-instruct"
).strip()
# Limpiar posibles comillas o puntuación extra
short_name = short_name.strip('"\'.,!?').strip()
if short_name and len(short_name) > 0:
scene_name = short_name
print(f"[schat] Nom generat: {scene_name}")
else:
print(f"[schat] No s'ha generat nom, usant fallback")
except Exception as e_schat:
print(f"Error generando nombre con schat: {e_schat}")
# Mantener el nombre de svision si schat falla
except Exception as e:
print(f"Error describiendo {scene_id}: {e}")
scene_list.append({
"id": scene_id,
"name": scene_name,
"description": scene_description,
"folder": str(out_dir),
"num_frames": len(frame_files),
"image_url": image_url,
"frame_files": frame_files,
})
cap.release()
return {"scene_clusters": scene_list, "base_dir": str(base)}
@app.post("/refine_narration")
async def refine_narration(
dialogues_srt: str = Form(...),
frame_descriptions_json: str = Form("[]"),
config_path: str = Form("config.yaml"),
):
cfg = load_yaml(config_path)
frames = json.loads(frame_descriptions_json)
model_name = cfg.get("narration", {}).get("model", "salamandra-instruct")
use_remote = model_name in (cfg.get("models", {}).get("routing", {}).get("use_remote_for", []))
if use_remote:
router = LLMRouter(cfg)
system_msg = (
"Eres un sistema de audiodescripción que cumple UNE-153010. "
"Fusiona diálogos del SRT con descripciones concisas en los huecos, evitando redundancias. "
"Devuelve JSON con {narrative_text, srt_text}."
)
prompt = json.dumps({"dialogues_srt": dialogues_srt, "frames": frames, "rules": cfg.get("narration", {})}, ensure_ascii=False)
try:
txt = router.instruct(prompt=prompt, system=system_msg, model=model_name)
out = {}
try:
out = json.loads(txt)
except Exception:
out = {"narrative_text": txt, "srt_text": ""}
return {
"narrative_text": out.get("narrative_text", ""),
"srt_text": out.get("srt_text", ""),
"approved": True,
"critic_feedback": "",
}
except Exception:
ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("narration_une_guidelines_path", "UNE_153010.txt"))
res = ns.run(dialogues_srt, frames)
return {"narrative_text": res.narrative_text, "srt_text": res.srt_text, "approved": res.approved, "critic_feedback": res.critic_feedback}
ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("une_guidelines_path", "UNE_153010.txt"))
out = ns.run(dialogues_srt, frames)
return {"narrative_text": out.narrative_text, "srt_text": out.srt_text, "approved": out.approved, "critic_feedback": out.critic_feedback}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)