File size: 4,420 Bytes
4602f5c
 
 
 
 
 
 
5de532d
 
 
 
4602f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff369d8
ed340ab
ff369d8
4602f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# streamlit_app.py

import streamlit as st
import pandas as pd
import requests

# ----------------- CONFIGURATION -----------------
# CRITICAL FIX: Setting the path to /api/predict. 
# The backend Flask app listens on '/predict', but the HF Space infrastructure 
# requires the /api/ prefix for external routing to the Docker container.
API_URL = "https://aibtus.ut.aiml.hf.space/api/predict" 

# Define static categorical options (MUST match preprocessing categories)
CATEGORIES = {
    'Product_Sugar_Content': ['no sugar', 'low sugar', 'regular'],
    'Store_Size': ['Low', 'Medium', 'High'],
    'Store_Location_City_Type': ['Tier 1', 'Tier 2', 'Tier 3'],
    'Store_Type': ['Supermarket Type 1', 'Supermarket Type 2', 'Supermarket Type 3', 'Food Mart'],
    'Product_Type': ['Snack Foods', 'Dairy', 'Baking Goods', 'Health and Hygiene', 'Frozen Foods', 'Others', 
                     'Soft Drinks', 'Household', 'Meat', 'Fruits and Vegetables', 'Breads', 'Breakfast', 
                     'Hard Drinks', 'Starchy Foods', 'Seafood', 'Canned'],
    'Product_Category_Simplified': ['FD', 'DR', 'NC']
}

FEATURE_COLS = [
    'Product_Weight', 'Product_Sugar_Content', 'Product_Allocated_Area',
    'Product_Type', 'Product_MRP', 'Store_Size',
    'Store_Location_City_Type', 'Store_Type', 'Store_Age',
    'Product_Category_Simplified'
]

# ----------------- APP INTERFACE -----------------

st.set_page_config(page_title="SuperKart Sales Forecaster", layout="wide")
st.title(" SuperKart Sales Forecasting Tool")

with st.form("sales_prediction_form"):
    st.header("Product Attributes")
    
    col1, col2, col3 = st.columns(3)
    
    product_weight = col1.number_input("Product Weight (kg)", min_value=1.0, max_value=20.0, value=10.0, step=0.1)
    product_mrp = col2.number_input("Product MRP (₹)", min_value=10.0, max_value=300.0, value=150.0, step=1.0)
    product_allocated_area = col3.number_input("Product Allocated Area", min_value=0.0, max_value=1.0, value=0.07, step=0.01)

    product_type = col1.selectbox("Product Type", options=CATEGORIES['Product_Type'])
    product_sugar_content = col2.selectbox("Product Sugar Content", options=CATEGORIES['Product_Sugar_Content'])
    product_category_simplified = col3.selectbox("Product Category (FD/DR/NC)", options=CATEGORIES['Product_Category_Simplified'])
    
    st.header("Store Attributes")
    
    col4, col5, col6 = st.columns(3)
    
    store_type = col4.selectbox("Store Type", options=CATEGORIES['Store_Type'])
    store_location_city_type = col5.selectbox("Store Location City Type", options=CATEGORIES['Store_Location_City_Type'])
    store_size = col6.selectbox("Store Size", options=CATEGORIES['Store_Size'])
    
    store_age = st.slider("Store Age (Years)", min_value=5, max_value=35, value=10)


    submitted = st.form_submit_button("Forecast Sales")

if submitted:
    input_data = {
        'Product_Weight': product_weight,
        'Product_Sugar_Content': product_sugar_content,
        'Product_Allocated_Area': product_allocated_area,
        'Product_Type': product_type,
        'Product_MRP': product_mrp,
        'Store_Size': store_size,
        'Store_Location_City_Type': store_location_city_type,
        'Store_Type': store_type,
        'Store_Age': float(store_age), 
        'Product_Category_Simplified': product_category_simplified
    }
    
    payload = [input_data]

    try:
        st.info(f"Sending request to API at: {API_URL}...")
        
        # FIX: verify=False flag kept to prevent the SSLError from recurring.
        response = requests.post(API_URL, json=payload, timeout=15, verify=False) 
        
        if response.status_code == 200:
            result = response.json()
            if result['status'] == 'success':
                st.success(f" **Forecast Complete!**")
                st.metric(label="Predicted Sales Revenue", value=f"₹{result['predicted_sales_revenue']:,.2f}")
                st.balloons()
            else:
                st.error(f"Prediction API Error: {result.get('error', 'Unknown error')}")
        else:
            st.error(f"**API Connection Error** (Status {response.status_code}): Check API URL and Docker logs.")

    except requests.exceptions.Timeout:
        st.error("**Connection Failed:** Request timed out (15s). The Docker API might be slow or unreachable.")
    except Exception as e:
        st.error(f"An unexpected error occurred: {e}")