Spaces:
Sleeping
Sleeping
gch0301
commited on
Commit
·
dffaf20
1
Parent(s):
8307dc4
- app.py +1 -10
- labels.txt +150 -197
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from PIL import Image
|
|
| 6 |
import torch
|
| 7 |
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
|
| 8 |
|
| 9 |
-
MODEL_ID = "
|
| 10 |
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
|
| 11 |
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
|
| 12 |
|
|
@@ -37,15 +37,6 @@ def ade_palette():
|
|
| 37 |
[28, 210, 99], [78, 89, 189], [189, 78, 57], [112, 200, 78], [189, 47, 78], [205, 112, 57],
|
| 38 |
[78, 145, 57], [200, 78, 112], [99, 89, 145], [200, 156, 78], [57, 78, 145], [78, 57, 99],
|
| 39 |
[57, 78, 145], [145, 112, 78], [78, 89, 145], [210, 99, 28], [145, 78, 189], [57, 200, 136],
|
| 40 |
-
[89, 156, 78], [145, 78, 99], [99, 28, 210], [189, 78, 47], [28, 210, 99], [78, 145, 57],[154, 87, 92], [112, 185, 212], [45, 189, 106], [234, 123, 67], [78, 56, 123], [210, 32, 89],
|
| 41 |
-
[40, 180, 56], [105, 102, 200], [0, 147, 176], [205, 183, 76], [17, 123, 89], [140, 60, 45],
|
| 42 |
-
[84, 112, 200], [6, 45, 189], [150, 56, 123], [37, 92, 204], [70, 56, 123], [0, 78, 123],
|
| 43 |
-
[106, 200, 56], [0, 90, 210], [6, 123, 67], [130, 56, 123], [73, 67, 45], [0, 134, 200],
|
| 44 |
-
[17, 56, 123], [28, 123, 67], [0, 210, 90], [0, 56, 189], [73, 56, 123], [56, 106, 200],
|
| 45 |
-
[139, 56, 45], [112, 200, 6], [56, 73, 45], [150, 32, 90], [123, 45, 28], [150, 156, 56],
|
| 46 |
-
[45, 17, 123], [56, 45, 28], [45, 6, 123], [73, 67, 56], [56, 78, 73], [160, 90, 32],
|
| 47 |
-
[123, 56, 139], [45, 150, 134], [67, 73, 56], [73, 45, 67], [90, 32, 160], [150, 45, 78],
|
| 48 |
-
[32, 210, 40],
|
| 49 |
]
|
| 50 |
|
| 51 |
labels_list = []
|
|
|
|
| 6 |
import torch
|
| 7 |
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
|
| 8 |
|
| 9 |
+
MODEL_ID = "Xenova/segformer-b0-finetuned-ade-512-512"
|
| 10 |
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
|
| 11 |
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
|
| 12 |
|
|
|
|
| 37 |
[28, 210, 99], [78, 89, 189], [189, 78, 57], [112, 200, 78], [189, 47, 78], [205, 112, 57],
|
| 38 |
[78, 145, 57], [200, 78, 112], [99, 89, 145], [200, 156, 78], [57, 78, 145], [78, 57, 99],
|
| 39 |
[57, 78, 145], [145, 112, 78], [78, 89, 145], [210, 99, 28], [145, 78, 189], [57, 200, 136],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
]
|
| 41 |
|
| 42 |
labels_list = []
|
labels.txt
CHANGED
|
@@ -1,197 +1,150 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
SweetStand,
|
| 152 |
-
Swing,
|
| 153 |
-
Sword,
|
| 154 |
-
TV,
|
| 155 |
-
Table,
|
| 156 |
-
TableChair,
|
| 157 |
-
TableLamp,
|
| 158 |
-
TableTennis,
|
| 159 |
-
Tank,
|
| 160 |
-
Tapeline,
|
| 161 |
-
Teapot,
|
| 162 |
-
Telescope,
|
| 163 |
-
Tent, '
|
| 164 |
-
TobaccoPipe,
|
| 165 |
-
Toy,
|
| 166 |
-
Tractor,
|
| 167 |
-
TrafficLight,
|
| 168 |
-
TrafficSign,
|
| 169 |
-
Trampoline,
|
| 170 |
-
TransmissionTower,
|
| 171 |
-
Tree,
|
| 172 |
-
Tricycle,
|
| 173 |
-
TrimmerCover,
|
| 174 |
-
Tripod,
|
| 175 |
-
Trombone,
|
| 176 |
-
Truck,
|
| 177 |
-
Trumpet,
|
| 178 |
-
Tuba, '
|
| 179 |
-
UAV,
|
| 180 |
-
Umbrella,
|
| 181 |
-
UnevenBars,
|
| 182 |
-
UtilityPole,
|
| 183 |
-
VacuumCleaner,
|
| 184 |
-
Violin,
|
| 185 |
-
Wakesurfing,
|
| 186 |
-
Watch,
|
| 187 |
-
WaterTower,
|
| 188 |
-
WateringPot,
|
| 189 |
-
Well,
|
| 190 |
-
WellLid,
|
| 191 |
-
Wheel,
|
| 192 |
-
Wheelchair,
|
| 193 |
-
WindTurbine,
|
| 194 |
-
Windmill,
|
| 195 |
-
WineGlass,
|
| 196 |
-
WireWhisk,
|
| 197 |
-
Yacht'
|
|
|
|
| 1 |
+
wall
|
| 2 |
+
building
|
| 3 |
+
sky
|
| 4 |
+
floor
|
| 5 |
+
tree
|
| 6 |
+
ceiling
|
| 7 |
+
road
|
| 8 |
+
bed
|
| 9 |
+
windowpane
|
| 10 |
+
grass
|
| 11 |
+
cabinet
|
| 12 |
+
sidewalk
|
| 13 |
+
person
|
| 14 |
+
earth
|
| 15 |
+
door
|
| 16 |
+
table
|
| 17 |
+
mountain
|
| 18 |
+
plant
|
| 19 |
+
curtain
|
| 20 |
+
chair
|
| 21 |
+
car
|
| 22 |
+
water
|
| 23 |
+
painting
|
| 24 |
+
sofa
|
| 25 |
+
shelf
|
| 26 |
+
house
|
| 27 |
+
sea
|
| 28 |
+
mirror
|
| 29 |
+
rug
|
| 30 |
+
field
|
| 31 |
+
armchair
|
| 32 |
+
seat
|
| 33 |
+
fence
|
| 34 |
+
desk
|
| 35 |
+
rock
|
| 36 |
+
wardrobe
|
| 37 |
+
lamp
|
| 38 |
+
bathtub
|
| 39 |
+
railing
|
| 40 |
+
cushion
|
| 41 |
+
base
|
| 42 |
+
box
|
| 43 |
+
column
|
| 44 |
+
signboard
|
| 45 |
+
chest of drawers
|
| 46 |
+
counter
|
| 47 |
+
sand
|
| 48 |
+
sink
|
| 49 |
+
skyscraper
|
| 50 |
+
fireplace
|
| 51 |
+
refrigerator
|
| 52 |
+
grandstand
|
| 53 |
+
path
|
| 54 |
+
stairs
|
| 55 |
+
runway
|
| 56 |
+
case
|
| 57 |
+
pool table
|
| 58 |
+
pillow
|
| 59 |
+
screen door
|
| 60 |
+
stairway
|
| 61 |
+
river
|
| 62 |
+
bridge
|
| 63 |
+
bookcase
|
| 64 |
+
blind
|
| 65 |
+
coffee table
|
| 66 |
+
toilet
|
| 67 |
+
flower
|
| 68 |
+
book
|
| 69 |
+
hill
|
| 70 |
+
bench
|
| 71 |
+
countertop
|
| 72 |
+
stove
|
| 73 |
+
palm
|
| 74 |
+
kitchen island
|
| 75 |
+
computer
|
| 76 |
+
swivel chair
|
| 77 |
+
boat
|
| 78 |
+
bar
|
| 79 |
+
arcade machine
|
| 80 |
+
hovel
|
| 81 |
+
bus
|
| 82 |
+
towel
|
| 83 |
+
light
|
| 84 |
+
truck
|
| 85 |
+
tower
|
| 86 |
+
chandelier
|
| 87 |
+
awning
|
| 88 |
+
streetlight
|
| 89 |
+
booth
|
| 90 |
+
television receiver
|
| 91 |
+
airplane
|
| 92 |
+
dirt track
|
| 93 |
+
apparel
|
| 94 |
+
pole
|
| 95 |
+
land
|
| 96 |
+
bannister
|
| 97 |
+
escalator
|
| 98 |
+
ottoman
|
| 99 |
+
bottle
|
| 100 |
+
buffet
|
| 101 |
+
poster
|
| 102 |
+
stage
|
| 103 |
+
van
|
| 104 |
+
ship
|
| 105 |
+
fountain
|
| 106 |
+
conveyer belt
|
| 107 |
+
canopy
|
| 108 |
+
washer
|
| 109 |
+
plaything
|
| 110 |
+
swimming pool
|
| 111 |
+
stool
|
| 112 |
+
barrel
|
| 113 |
+
basket
|
| 114 |
+
waterfall
|
| 115 |
+
tent
|
| 116 |
+
bag
|
| 117 |
+
minibike
|
| 118 |
+
cradle
|
| 119 |
+
oven
|
| 120 |
+
ball
|
| 121 |
+
food
|
| 122 |
+
step
|
| 123 |
+
tank
|
| 124 |
+
trade name
|
| 125 |
+
microwave
|
| 126 |
+
pot
|
| 127 |
+
animal
|
| 128 |
+
bicycle
|
| 129 |
+
lake
|
| 130 |
+
dishwasher
|
| 131 |
+
screen
|
| 132 |
+
blanket
|
| 133 |
+
sculpture
|
| 134 |
+
hood
|
| 135 |
+
sconce
|
| 136 |
+
vase
|
| 137 |
+
traffic light
|
| 138 |
+
tray
|
| 139 |
+
ashcan
|
| 140 |
+
fan
|
| 141 |
+
pier
|
| 142 |
+
crt screen
|
| 143 |
+
plate
|
| 144 |
+
monitor
|
| 145 |
+
bulletin board
|
| 146 |
+
shower
|
| 147 |
+
radiator
|
| 148 |
+
glass
|
| 149 |
+
clock
|
| 150 |
+
flag
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|