metadata
title: Computervisionobjectdetection
emoji: β‘
colorFrom: purple
colorTo: pink
sdk: gradio
sdk_version: 5.31.0
app_file: app.py
pinned: false
π·β¨ Object Detection Demo
π Overview
Experience real-time, Transformer-powered object detection entirely on CPU.
Upload any image and instantly see bounding boxes, labels, and confidence scoresβall wrapped in a sleek Gradio interface.
Core technologies:
β’ DETR (DEtection TRansformer) for end-to-end CV pipelines
β’ Hugging Face Transformers for model orchestration
β’ Gradio Blocks for interactive web UI
β’ Pillow (PIL) for image annotation
β¨ Key Features
| π Feature | π Description |
|---|---|
| β‘ Transformer CV | Uses DETR + ResNet-50 backbone for state-of-the-art accuracy |
| π Real-Time Inference | Sub-second CPU performance on typical images |
| π¨ Annotated Output | Red boxes + text overlays for clear visual feedback |
| π Detection Table | Interactive DataFrame of labels & confidence scores |
| βοΈ Cloud-Native Deploy | One-click deploy on free Hugging Face Spaces |
| π§ Modular Architecture | Swap models or add filters with minimal code changes |
ποΈ Architecture & Workflow
- Image Upload
User drops in any JPEG/PNG. - DETR Pipeline
pipeline("object-detection", model="facebook/detr-resnet-50") - Post-processing
Draws bounding boxes + labels via PIL. - UI Rendering
Gradio displays the annotated image and a label/score table.
π οΈ Quick Start (Local)
git clone https://github.com/your-username/object-detection-demo.git
cd object-detection-demo
python3 -m venv venv && source venv/bin/activate
pip install -r requirements.txt
python app.py