Spaces:
Sleeping
Sleeping
Use wav2vec params for the pipeline
Browse files
app.py
CHANGED
|
@@ -4,19 +4,24 @@ import gradio as gr
|
|
| 4 |
import pytube as pt
|
| 5 |
from transformers import pipeline
|
| 6 |
from huggingface_hub import model_info
|
|
|
|
| 7 |
|
| 8 |
-
MODEL_NAME = "ihanif/wav2vec2-xls-r-300m-pashto"
|
| 9 |
lang = "ps"
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 12 |
pipe = pipeline(
|
| 13 |
task="automatic-speech-recognition",
|
| 14 |
model=MODEL_NAME,
|
| 15 |
-
chunk_length_s=30,
|
| 16 |
device=device,
|
| 17 |
)
|
| 18 |
|
| 19 |
-
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
|
| 20 |
|
| 21 |
def transcribe(microphone, file_upload):
|
| 22 |
warn_output = ""
|
|
@@ -32,6 +37,7 @@ def transcribe(microphone, file_upload):
|
|
| 32 |
file = microphone if microphone is not None else file_upload
|
| 33 |
|
| 34 |
text = pipe(file)["text"]
|
|
|
|
| 35 |
|
| 36 |
return warn_output + text
|
| 37 |
|
|
|
|
| 4 |
import pytube as pt
|
| 5 |
from transformers import pipeline
|
| 6 |
from huggingface_hub import model_info
|
| 7 |
+
#from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 8 |
|
| 9 |
+
MODEL_NAME = "ihanif/wav2vec2-xls-r-300m-pashto"
|
| 10 |
lang = "ps"
|
| 11 |
|
| 12 |
+
#load pre-trained model and tokenizer
|
| 13 |
+
#processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
| 14 |
+
#model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
|
| 15 |
+
|
| 16 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 17 |
pipe = pipeline(
|
| 18 |
task="automatic-speech-recognition",
|
| 19 |
model=MODEL_NAME,
|
| 20 |
+
#chunk_length_s=30,
|
| 21 |
device=device,
|
| 22 |
)
|
| 23 |
|
| 24 |
+
#pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
|
| 25 |
|
| 26 |
def transcribe(microphone, file_upload):
|
| 27 |
warn_output = ""
|
|
|
|
| 37 |
file = microphone if microphone is not None else file_upload
|
| 38 |
|
| 39 |
text = pipe(file)["text"]
|
| 40 |
+
#transcription = wav2vec_model(audio)["text"]
|
| 41 |
|
| 42 |
return warn_output + text
|
| 43 |
|