AnsysLPFMTrame-App / datasets /DrivAerML /openfoam_datapipe.py
udbhav
Recreate Trame_app branch with clean history
67fb03c
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This is the datapipe to read OpenFoam files (vtp/vtu/stl) and save them as point clouds
in npy format.
"""
import time, random
from collections import defaultdict
from pathlib import Path
from typing import Any, Iterable, List, Literal, Mapping, Optional, Union, Callable
import numpy as np
import pandas as pd
import pyvista as pv
import vtk
from torch.utils.data import Dataset
import os
from vtk.util import numpy_support
AIR_DENSITY = 1.205
STREAM_VELOCITY = 30.00
def get_filenames(filepath: str) -> List[str]:
"""Function to get filenames from a directory"""
if os.path.exists(filepath):
filenames = []
for item in os.listdir(filepath):
filenames.append(item)
return filenames
else:
FileNotFoundError()
def get_node_to_elem(polydata: Any) -> Any:
"""Function to convert node to elem"""
c2p = vtk.vtkPointDataToCellData()
c2p.SetInputData(polydata)
c2p.Update()
cell_data = c2p.GetOutput()
return cell_data
def get_fields(data, variables):
"""Function to get fields from VTP/VTU"""
fields = []
for array_name in variables:
try:
array = data.GetArray(array_name)
except ValueError:
raise ValueError(
f"Failed to get array {array_name} from the unstructured grid."
)
array_data = numpy_support.vtk_to_numpy(array).reshape(
array.GetNumberOfTuples(), array.GetNumberOfComponents()
)
fields.append(array_data)
return fields
def get_vertices(polydata):
"""Function to get vertices"""
points = polydata.GetPoints()
vertices = numpy_support.vtk_to_numpy(points.GetData())
return vertices
def get_volume_data(polydata, variables):
"""Function to get volume data"""
vertices = get_vertices(polydata)
point_data = polydata.GetPointData()
fields = get_fields(point_data, variables)
return vertices, fields
class DrivAerAwsPaths:
@staticmethod
def _get_index(car_dir: Path) -> str:
return car_dir.name.removeprefix("run_")
@staticmethod
def geometry_path(car_dir: Path) -> Path:
return car_dir / f"drivaer_{DrivAerAwsPaths._get_index(car_dir)}.stl"
@staticmethod
def volume_path(car_dir: Path) -> Path:
return car_dir / f"volume_{DrivAerAwsPaths._get_index(car_dir)}.vtu"
@staticmethod
def surface_path(car_dir: Path) -> Path:
return car_dir / f"boundary_{DrivAerAwsPaths._get_index(car_dir)}.vtp"
class OpenFoamDataset(Dataset):
"""
Datapipe for converting openfoam dataset to npy
"""
def __init__(
self,
data_path: Union[str, Path],
surface_variables: Optional[list] = [
"pMean",
"wallShearStress",
],
volume_variables: Optional[list] = ["UMean", "pMean"],
model_type=None,
):
if isinstance(data_path, str):
data_path = Path(data_path)
data_path = data_path.expanduser()
self.data_path = data_path
self.path_getter = DrivAerAwsPaths
assert self.data_path.exists(), f"Path {self.data_path} does not exist"
assert self.data_path.is_dir(), f"Path {self.data_path} is not a directory"
self.filenames = get_filenames(self.data_path)
random.shuffle(self.filenames)
self.indices = np.array(len(self.filenames))
self.surface_variables = surface_variables
self.volume_variables = volume_variables
self.model_type = model_type
def __len__(self):
return len(self.filenames)
def __getitem__(self, idx):
cfd_filename = self.filenames[idx]
car_dir = self.data_path / cfd_filename
stl_path = self.path_getter.geometry_path(car_dir)
reader = pv.get_reader(stl_path)
mesh_stl = reader.read()
stl_vertices = mesh_stl.points
stl_faces = np.array(mesh_stl.faces).reshape((-1, 4))[
:, 1:
] # Assuming triangular elements
mesh_indices_flattened = stl_faces.flatten()
stl_sizes = mesh_stl.compute_cell_sizes(length=False, area=True, volume=False)
stl_sizes = np.array(stl_sizes.cell_data["Area"])
stl_centers = np.array(mesh_stl.cell_centers().points)
length_scale = np.amax(np.amax(stl_vertices, 0) - np.amin(stl_vertices, 0))
if self.model_type == "volume" or self.model_type == "combined":
filepath = self.path_getter.volume_path(car_dir)
reader = vtk.vtkXMLUnstructuredGridReader()
reader.SetFileName(filepath)
reader.Update()
# Get the unstructured grid data
polydata = reader.GetOutput()
volume_coordinates, volume_fields = get_volume_data(
polydata, self.volume_variables
)
volume_fields = np.concatenate(volume_fields, axis=-1)
# Non-dimensionalize volume fields
volume_fields[:, :3] = volume_fields[:, :3] / STREAM_VELOCITY
volume_fields[:, 3:4] = volume_fields[:, 3:4] / (
AIR_DENSITY * STREAM_VELOCITY**2.0
)
volume_fields[:, 4:] = volume_fields[:, 4:] / (
STREAM_VELOCITY * length_scale
)
else:
volume_fields = None
volume_coordinates = None
if self.model_type == "surface" or self.model_type == "combined":
surface_filepath = self.path_getter.surface_path(car_dir)
reader = vtk.vtkXMLPolyDataReader()
reader.SetFileName(surface_filepath)
reader.Update()
polydata = reader.GetOutput()
celldata_all = get_node_to_elem(polydata)
celldata = celldata_all.GetCellData()
surface_fields = get_fields(celldata, self.surface_variables)
surface_fields = np.concatenate(surface_fields, axis=-1)
mesh = pv.PolyData(polydata)
surface_coordinates = np.array(mesh.cell_centers().points)
surface_normals = np.array(mesh.cell_normals)
surface_sizes = mesh.compute_cell_sizes(
length=False, area=True, volume=False
)
surface_sizes = np.array(surface_sizes.cell_data["Area"])
# Normalize cell normals
surface_normals = (
surface_normals / np.linalg.norm(surface_normals, axis=1)[:, np.newaxis]
)
# Non-dimensionalize surface fields
surface_fields = surface_fields / (AIR_DENSITY * STREAM_VELOCITY**2.0)
else:
surface_fields = None
surface_coordinates = None
surface_normals = None
surface_sizes = None
# Add the parameters to the dictionary
return {
"stl_coordinates": np.float32(stl_vertices),
"stl_centers": np.float32(stl_centers),
"stl_faces": np.float32(mesh_indices_flattened),
"stl_areas": np.float32(stl_sizes),
"surface_mesh_centers": np.float32(surface_coordinates),
"surface_normals": np.float32(surface_normals),
"surface_areas": np.float32(surface_sizes),
"volume_fields": np.float32(volume_fields),
"volume_mesh_centers": np.float32(volume_coordinates),
"surface_fields": np.float32(surface_fields),
"filename": cfd_filename,
"stream_velocity": STREAM_VELOCITY,
"air_density": AIR_DENSITY,
}