udbhav
Recreate Trame_app branch with clean history
67fb03c
import os
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
import pyvista as pv
import json
class Data_loader(Dataset):
def __init__(self, cfg, split, epoch_seed=None, mode='train'):
"""
data_dir: parent directory
split: list of int, e.g. [0,1,2,3,4] for train, [5] for val, [6] for test
num_points: number of points to sample per geometry
epoch_seed: seed for random sampling (for training)
mode: 'train', 'val', or 'test'
"""
self.data_dir = cfg.data_dir
self.split = split
self.num_points = cfg.num_points
self.epoch_seed = epoch_seed
self.mode = mode
self.cfg = cfg
self.meshes = []
self.mesh_names = []
for idx in split:
folder = f"{cfg.data_folder}_{idx}"
vtp_file = os.path.join(self.data_dir,folder, f"{folder}.vtp")
if not os.path.exists(vtp_file):
raise FileNotFoundError(f"{vtp_file} not found.")
mesh = pv.read(vtp_file)
self.meshes.append(mesh)
self.mesh_names.append(folder)
# For validation chunking
self.val_indices = None
self.val_chunk_ptr = 0
with open(cfg.json_file, "r") as f:
self.json_data = json.load(f)
def set_epoch(self, epoch):
self.epoch_seed = epoch
self.val_indices = None
self.val_chunk_ptr = 0
def __len__(self):
if self.mode == 'train':
return len(self.meshes)
elif self.mode == 'val':
return len(self.meshes)
elif self.mode == 'test':
# Number of chunks = total points in all val meshes // num_points + remainder chunk
total = 0
for mesh in self.meshes:
return len(self.meshes)
else:
raise ValueError(f"Unknown mode: {self.mode}")
def __getitem__(self, idx):
if self.mode == 'train' or self.mode == 'val':
# Each item is a geometry, sample num_points randomly
mesh = self.meshes[idx]
n_pts = mesh.points.shape[0]
rng = np.random.default_rng(self.epoch_seed+idx)
indices = rng.choice(n_pts, self.num_points, replace=False)
pos = mesh.points[indices]
pos = torch.tensor(pos, dtype=torch.float32)
von_mises_stress = torch.tensor( mesh["von_mises_stress"][indices], dtype=torch.float32).unsqueeze(-1)
x_displacement = torch.tensor( mesh["x_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
y_displacement = torch.tensor( mesh["y_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
z_displacement = torch.tensor( mesh["z_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
target = torch.cat([von_mises_stress, x_displacement, y_displacement, z_displacement], dim=-1)
if self.cfg.normalization == "std_norm":
von_mises_stress_scaled = (von_mises_stress - self.json_data["scalars"]["von_mises_stress"]["mean"]) / self.json_data["scalars"]["von_mises_stress"]["std"]
target[:,0:1] = von_mises_stress_scaled
if self.cfg.pos_embed_sincos:
input_pos_mins = torch.tensor(self.json_data["mesh_stats"]["min"])
input_pos_maxs = torch.tensor(self.json_data["mesh_stats"]["max"])
pos_norm = 1000*(pos - input_pos_mins) / (input_pos_maxs - input_pos_mins)
return {"input_pos": pos_norm, "output_feat": target ,"data_id": self.mesh_names[idx]}
elif self.mode == 'test':
# For each mesh in test, scramble all points and return the full mesh
mesh = self.meshes[idx]
n_pts = mesh.points.shape[0]
rng = np.random.default_rng(self.epoch_seed+idx)
indices = rng.permutation(n_pts)
pos = mesh.points[indices]
von_mises_stress = torch.tensor( mesh["von_mises_stress"][indices], dtype=torch.float32).unsqueeze(-1)
x_displacement = torch.tensor( mesh["x_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
y_displacement = torch.tensor( mesh["y_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
z_displacement = torch.tensor( mesh["z_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
target = torch.cat([von_mises_stress, x_displacement, y_displacement, z_displacement], dim=-1)
pos = torch.tensor(pos, dtype=torch.float32)
if self.cfg.normalization == "std_norm":
von_mises_stress_scaled = (von_mises_stress - self.json_data["scalars"]["von_mises_stress"]["mean"]) / self.json_data["scalars"]["von_mises_stress"]["std"]
target[:,0:1] = von_mises_stress_scaled
if self.cfg.pos_embed_sincos:
input_pos_mins = torch.tensor(self.json_data["mesh_stats"]["min"])
input_pos_maxs = torch.tensor(self.json_data["mesh_stats"]["max"])
pos_norm = 1000*(pos - input_pos_mins) / (input_pos_maxs - input_pos_mins)
return {"input_pos": pos_norm, "output_feat": target ,"data_id": self.mesh_names[idx],"physical_coordinates":mesh.points[indices]}
else:
raise ValueError(f"Unknown mode: {self.mode}")
def get_dataloaders(cfg):
with open(os.path.join(cfg.splits_file, "train.txt")) as f:
train_split = [int(line.strip().split('_')[-1]) for line in f if line.strip()]
with open(os.path.join(cfg.splits_file, "test.txt")) as f:
test_split = [int(line.strip().split('_')[-1]) for line in f if line.strip()]
with open(os.path.join(cfg.splits_file, "test.txt")) as f:
test_split = [int(line.strip().split('_')[-1]) for line in f if line.strip()]
print("Indices in test_split:", test_split)
train_dataset = Data_loader(cfg, train_split, mode='train')
val_dataset = Data_loader(cfg, test_split, mode='val')
test_dataset = Data_loader(cfg, test_split, mode='test')
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
return train_loader, val_loader, test_loader