File size: 14,503 Bytes
03ae022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74af434
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import os
import gradio as gr
import torch
from PIL import Image, ImageDraw
from transformers import GroundingDinoProcessor
from hf_model import CountEX
from utils import post_process_grounded_object_detection, post_process_grounded_object_detection_with_queries

# Global variables for model and processor
model = None
processor = None
device = None


def load_model():
    """Load model and processor once at startup"""
    global model, processor, device

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Load model - change path for HF Spaces
    model_id = "yifehuang97/CountEX-KC-v2"  # Change to your HF model repo
    model = CountEX.from_pretrained(model_id, token=os.environ.get("HF_TOKEN"))
    model = model.to(torch.bfloat16)
    model = model.to(device)
    model.eval()

    # Load processor
    processor_id = "fushh7/llmdet_swin_tiny_hf"
    processor = GroundingDinoProcessor.from_pretrained(processor_id)

    return model, processor, device


import numpy as np

def filter_points_by_negative(points, neg_points, image_size, pixel_threshold=5):
    """
    Filter out positive points that are too close to any negative point.
    
    Args:
        points: List of [x, y] positive points (normalized coordinates, 0-1)
        neg_points: List of [x, y] negative points (normalized coordinates, 0-1)
        image_size: Tuple of (width, height) in pixels
        pixel_threshold: Minimum distance threshold in pixels
    
    Returns:
        filtered_points: List of points that are far enough from all negative points
        filtered_indices: Indices of the kept points in the original list
    """
    if not neg_points or not points:
        return points, list(range(len(points)))
    
    width, height = image_size
    
    points_arr = np.array(points)  # (N, 2) normalized
    neg_points_arr = np.array(neg_points)  # (M, 2) normalized
    
    # Convert to pixel coordinates
    points_pixel = points_arr * np.array([width, height])  # (N, 2)
    neg_points_pixel = neg_points_arr * np.array([width, height])  # (M, 2)
    
    # Compute pairwise distances in pixels: (N, M)
    diff = points_pixel[:, None, :] - neg_points_pixel[None, :, :]
    distances = np.linalg.norm(diff, axis=-1)  # (N, M)
    
    # Find minimum distance to any negative point for each positive point
    min_distances = distances.min(axis=1)  # (N,)
    
    # Keep points where min distance > threshold
    keep_mask = min_distances > pixel_threshold
    
    filtered_points = points_arr[keep_mask].tolist()
    filtered_indices = np.where(keep_mask)[0].tolist()
    
    return filtered_points, filtered_indices


import numpy as np

def discriminative_point_suppression(
    points, 
    neg_points, 
    pos_queries,      # (N, D) numpy array
    neg_queries,      # (M, D) numpy array
    image_size,
    pixel_threshold=5,
    similarity_threshold=0.3,
):
    """
    Discriminative Point Suppression (DPS):
    
    Step 1: Find spatially closest negative point for each positive point
    Step 2: If distance < pixel_threshold, check query similarity
    Step 3: Suppress only if query similarity > similarity_threshold
    
    This two-stage design ensures suppression only when predictions are
    both spatially overlapping AND semantically conflicting.
    
    Args:
        points: List of [x, y] positive points (normalized, 0-1)
        neg_points: List of [x, y] negative points (normalized, 0-1)
        pos_queries: (N, D) query embeddings for positive predictions
        neg_queries: (M, D) query embeddings for negative predictions
        image_size: (width, height) in pixels
        pixel_threshold: spatial distance threshold in pixels
        similarity_threshold: cosine similarity threshold for semantic conflict
    
    Returns:
        filtered_points: points after suppression
        filtered_indices: indices of kept points
        suppression_info: dict with detailed suppression decisions
    """
    if not neg_points or not points:
        return points, list(range(len(points))), {}
    
    width, height = image_size
    N, M = len(points), len(neg_points)
    
    # === Step 1: Spatial Matching ===
    points_arr = np.array(points) * np.array([width, height])  # (N, 2)
    neg_points_arr = np.array(neg_points) * np.array([width, height])  # (M, 2)
    
    # Compute pairwise distances
    spatial_dist = np.linalg.norm(
        points_arr[:, None, :] - neg_points_arr[None, :, :], axis=-1
    )  # (N, M)
    
    # Find nearest negative for each positive
    nearest_neg_idx = spatial_dist.argmin(axis=1)  # (N,)
    nearest_neg_dist = spatial_dist.min(axis=1)    # (N,)
    
    # Check spatial condition
    spatially_close = nearest_neg_dist < pixel_threshold  # (N,)
    
    # === Step 2: Query Similarity Check (only for spatially close pairs) ===
    # Normalize queries
    pos_q = pos_queries / (np.linalg.norm(pos_queries, axis=-1, keepdims=True) + 1e-8)
    neg_q = neg_queries / (np.linalg.norm(neg_queries, axis=-1, keepdims=True) + 1e-8)
    
    # Compute similarity only for matched pairs
    matched_neg_q = neg_q[nearest_neg_idx]  # (N, D)
    query_sim = (pos_q * matched_neg_q).sum(axis=-1)  # (N,) cosine similarity
    
    # Check semantic condition
    semantically_similar = query_sim > similarity_threshold  # (N,)
    
    # === Step 3: Joint Decision ===
    # Suppress only if BOTH conditions are met
    should_suppress = spatially_close & semantically_similar  # (N,)
    
    # === Filter ===
    keep_mask = ~should_suppress
    filtered_points = np.array(points)[keep_mask].tolist()
    filtered_indices = np.where(keep_mask)[0].tolist()
    
    # === Suppression Info ===
    suppression_info = {
        "nearest_neg_idx": nearest_neg_idx.tolist(),
        "nearest_neg_dist": nearest_neg_dist.tolist(),
        "query_similarity": query_sim.tolist(),
        "spatially_close": spatially_close.tolist(),
        "semantically_similar": semantically_similar.tolist(),
        "suppressed_indices": np.where(should_suppress)[0].tolist(),
    }
    
    return filtered_points, filtered_indices, suppression_info

def count_objects(image, pos_caption, neg_caption, box_threshold, point_radius, point_color):
    """
    Main inference function for counting objects

    Args:
        image: Input PIL Image
        pos_caption: Positive prompt (objects to count)
        neg_caption: Negative prompt (objects to exclude)
        box_threshold: Detection confidence threshold
        point_radius: Radius of visualization points
        point_color: Color of visualization points

    Returns:
        Annotated image and count
    """
    global model, processor, device

    if model is None:
        load_model()

    # Ensure image is RGB
    if image.mode != "RGB":
        image = image.convert("RGB")

    # Ensure captions end with period
    if not pos_caption.endswith('.'):
        pos_caption = pos_caption + '.'
    if neg_caption and not neg_caption.endswith('.'):
        neg_caption = neg_caption + '.'

    # Process positive caption
    pos_inputs = processor(
        images=image,
        text=pos_caption,
        return_tensors="pt",
        padding=True
    )
    pos_inputs = pos_inputs.to(device)
    pos_inputs['pixel_values'] = pos_inputs['pixel_values'].to(torch.bfloat16)

    # Process negative caption if provided
    use_neg = bool(neg_caption and neg_caption.strip() and neg_caption != '.')

    if use_neg:
        neg_inputs = processor(
            images=image,
            text=neg_caption,
            return_tensors="pt",
            padding=True
        )
        neg_inputs = {k: v.to(device) for k, v in neg_inputs.items()}
        neg_inputs['pixel_values'] = neg_inputs['pixel_values'].to(torch.bfloat16)

        # Add negative inputs to positive inputs dict
        pos_inputs['neg_token_type_ids'] = neg_inputs['token_type_ids']
        pos_inputs['neg_attention_mask'] = neg_inputs['attention_mask']
        pos_inputs['neg_pixel_mask'] = neg_inputs['pixel_mask']
        pos_inputs['neg_pixel_values'] = neg_inputs['pixel_values']
        pos_inputs['neg_input_ids'] = neg_inputs['input_ids']
        pos_inputs['use_neg'] = True
    else:
        pos_inputs['use_neg'] = False

    # Run inference
    with torch.no_grad():
        outputs = model(**pos_inputs)

    # Post-process outputs
    # positive prediction
    outputs["pred_points"] = outputs["pred_boxes"][:, :, :2]
    outputs["pred_logits"] = outputs["logits"]

    threshold = box_threshold if box_threshold > 0 else model.box_threshold
    pos_queries = outputs["pos_queries"].squeeze(0).float()
    neg_queries = outputs["neg_queries"].squeeze(0).float()
    pos_queries = pos_queries[-1].squeeze(0)
    neg_queries = neg_queries[-1].squeeze(0)
    pos_queries = pos_queries.unsqueeze(0)
    neg_queries = neg_queries.unsqueeze(0)
    results = post_process_grounded_object_detection_with_queries(outputs, pos_queries, box_threshold=threshold)[0]

    boxes = results["boxes"]
    boxes = [box.tolist() for box in boxes]
    points = [[box[0], box[1]] for box in boxes]

    # negative prediction 
    if "neg_pred_boxes" in outputs and "neg_logits" in outputs:
        neg_outputs = outputs.copy()
        neg_outputs["pred_boxes"] = outputs["neg_pred_boxes"]
        neg_outputs["logits"] = outputs["neg_logits"]
        neg_outputs["pred_points"] = outputs["neg_pred_boxes"][:, :, :2]
        neg_outputs["pred_logits"] = outputs["neg_logits"]

        neg_results = post_process_grounded_object_detection_with_queries(neg_outputs, neg_queries, box_threshold=threshold)[0]
        neg_boxes = neg_results["boxes"]
        neg_boxes = [box.tolist() for box in neg_boxes]
        neg_points = [[box[0], box[1]] for box in neg_boxes]
    
    pos_queries = results["queries"]
    neg_queries = neg_results["queries"]
    pos_queries = pos_queries.cpu().numpy()
    neg_queries = neg_queries.cpu().numpy()
    
    img_size = image.size
    # filtered_points, kept_indices = filter_points_by_negative(
    #     points, 
    #     neg_points, 
    #     image_size=img_size,
    #     pixel_threshold=5
    # )
    filtered_points, kept_indices, suppression_info = discriminative_point_suppression(
        points, 
        neg_points, 
        pos_queries,
        neg_queries,
        image_size=img_size,
        pixel_threshold=5,
        similarity_threshold=0.3,
    )
    
    filtered_boxes = [boxes[i] for i in kept_indices]
    if "scores" in results:
        filtered_scores = [results["scores"][i].item() for i in kept_indices]
    
    points = filtered_points
    boxes = filtered_boxes

    # Visualize results
    img_w, img_h = image.size
    img_draw = image.copy()
    draw = ImageDraw.Draw(img_draw)

    for point in points:
        x = point[0] * img_w
        y = point[1] * img_h
        draw.ellipse(
            [x - point_radius, y - point_radius, x + point_radius, y + point_radius],
            fill=point_color
        )
    
    # for point in neg_points:
    #     x = point[0] * img_w
    #     y = point[1] * img_h
    #     draw.ellipse(
    #         [x - point_radius, y - point_radius, x + point_radius, y + point_radius],
    #         fill="red"
    #     )

    count = len(points)

    return img_draw, f"Count: {count}"


# Create Gradio interface
def create_demo():
    with gr.Blocks(title="CountEx: Discriminative Visual Counting") as demo:
        gr.Markdown("""
        # CountEx: Fine-Grained Counting via Exemplars and Exclusion
        Count specific objects in images using positive and negative text prompts.
        """)

        with gr.Row():
            with gr.Column(scale=1):
                input_image = gr.Image(type="pil", label="Input Image")

                pos_caption = gr.Textbox(
                    label="Positive Prompt",
                    placeholder="e.g., Green Apple",
                    value="Pos Caption Here."
                )

                neg_caption = gr.Textbox(
                    label="Negative Prompt (optional)",
                    placeholder="e.g., Red Apple",
                    value="None."
                )

                box_threshold = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.42,
                    step=0.01,
                    label="Detection Threshold (0.42 = use model default)"
                )

                point_radius = gr.Slider(
                    minimum=1,
                    maximum=20,
                    value=5,
                    step=1,
                    label="Point Radius"
                )

                point_color = gr.Dropdown(
                    choices=["blue", "red", "green", "yellow", "cyan", "magenta", "white"],
                    value="blue",
                    label="Point Color"
                )

                submit_btn = gr.Button("Count Objects", variant="primary")

            with gr.Column(scale=1):
                output_image = gr.Image(type="pil", label="Result")
                count_output = gr.Textbox(label="Count Result")

        # Example images
        # ["examples/in_the_wild.jpg", "Green plastic cup.", "Blue plastic cup."],
        gr.Examples(
            examples=[
                ["examples/apples.png", "apple.", "Green apple."],
                ["examples/apple.jpg", "apple.", "red apple."],
                ["examples/black_beans.jpg", "Black bean.", "Soy bean."],
                ["examples/candy.jpg", "Brown coffee candy.", "Black coffee candy."],
                ["examples/strawberry.jpg", "strawberry and blueberry.", "strawberry."],
                ["examples/strawberry2.jpg", "strawberry and blueberry.", "strawberry."],
                ["examples/women.jpg", "person.", "woman."],
                ["examples/boat-1.jpg", "boat.", "blue boat."],
            ],
            inputs=[input_image, pos_caption, neg_caption],
            outputs=[output_image, count_output],
            fn=count_objects,
            cache_examples=False,
        )

        submit_btn.click(
            fn=count_objects,
            inputs=[input_image, pos_caption, neg_caption, box_threshold, point_radius, point_color],
            outputs=[output_image, count_output]
        )

    return demo


if __name__ == "__main__":
    # Load model at startup
    print("Loading model...")
    load_model()
    print("Model loaded!")

    # Create and launch demo
    demo = create_demo()
    demo.launch()