Spaces:
Sleeping
Sleeping
File size: 14,503 Bytes
03ae022 74af434 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import os
import gradio as gr
import torch
from PIL import Image, ImageDraw
from transformers import GroundingDinoProcessor
from hf_model import CountEX
from utils import post_process_grounded_object_detection, post_process_grounded_object_detection_with_queries
# Global variables for model and processor
model = None
processor = None
device = None
def load_model():
"""Load model and processor once at startup"""
global model, processor, device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model - change path for HF Spaces
model_id = "yifehuang97/CountEX-KC-v2" # Change to your HF model repo
model = CountEX.from_pretrained(model_id, token=os.environ.get("HF_TOKEN"))
model = model.to(torch.bfloat16)
model = model.to(device)
model.eval()
# Load processor
processor_id = "fushh7/llmdet_swin_tiny_hf"
processor = GroundingDinoProcessor.from_pretrained(processor_id)
return model, processor, device
import numpy as np
def filter_points_by_negative(points, neg_points, image_size, pixel_threshold=5):
"""
Filter out positive points that are too close to any negative point.
Args:
points: List of [x, y] positive points (normalized coordinates, 0-1)
neg_points: List of [x, y] negative points (normalized coordinates, 0-1)
image_size: Tuple of (width, height) in pixels
pixel_threshold: Minimum distance threshold in pixels
Returns:
filtered_points: List of points that are far enough from all negative points
filtered_indices: Indices of the kept points in the original list
"""
if not neg_points or not points:
return points, list(range(len(points)))
width, height = image_size
points_arr = np.array(points) # (N, 2) normalized
neg_points_arr = np.array(neg_points) # (M, 2) normalized
# Convert to pixel coordinates
points_pixel = points_arr * np.array([width, height]) # (N, 2)
neg_points_pixel = neg_points_arr * np.array([width, height]) # (M, 2)
# Compute pairwise distances in pixels: (N, M)
diff = points_pixel[:, None, :] - neg_points_pixel[None, :, :]
distances = np.linalg.norm(diff, axis=-1) # (N, M)
# Find minimum distance to any negative point for each positive point
min_distances = distances.min(axis=1) # (N,)
# Keep points where min distance > threshold
keep_mask = min_distances > pixel_threshold
filtered_points = points_arr[keep_mask].tolist()
filtered_indices = np.where(keep_mask)[0].tolist()
return filtered_points, filtered_indices
import numpy as np
def discriminative_point_suppression(
points,
neg_points,
pos_queries, # (N, D) numpy array
neg_queries, # (M, D) numpy array
image_size,
pixel_threshold=5,
similarity_threshold=0.3,
):
"""
Discriminative Point Suppression (DPS):
Step 1: Find spatially closest negative point for each positive point
Step 2: If distance < pixel_threshold, check query similarity
Step 3: Suppress only if query similarity > similarity_threshold
This two-stage design ensures suppression only when predictions are
both spatially overlapping AND semantically conflicting.
Args:
points: List of [x, y] positive points (normalized, 0-1)
neg_points: List of [x, y] negative points (normalized, 0-1)
pos_queries: (N, D) query embeddings for positive predictions
neg_queries: (M, D) query embeddings for negative predictions
image_size: (width, height) in pixels
pixel_threshold: spatial distance threshold in pixels
similarity_threshold: cosine similarity threshold for semantic conflict
Returns:
filtered_points: points after suppression
filtered_indices: indices of kept points
suppression_info: dict with detailed suppression decisions
"""
if not neg_points or not points:
return points, list(range(len(points))), {}
width, height = image_size
N, M = len(points), len(neg_points)
# === Step 1: Spatial Matching ===
points_arr = np.array(points) * np.array([width, height]) # (N, 2)
neg_points_arr = np.array(neg_points) * np.array([width, height]) # (M, 2)
# Compute pairwise distances
spatial_dist = np.linalg.norm(
points_arr[:, None, :] - neg_points_arr[None, :, :], axis=-1
) # (N, M)
# Find nearest negative for each positive
nearest_neg_idx = spatial_dist.argmin(axis=1) # (N,)
nearest_neg_dist = spatial_dist.min(axis=1) # (N,)
# Check spatial condition
spatially_close = nearest_neg_dist < pixel_threshold # (N,)
# === Step 2: Query Similarity Check (only for spatially close pairs) ===
# Normalize queries
pos_q = pos_queries / (np.linalg.norm(pos_queries, axis=-1, keepdims=True) + 1e-8)
neg_q = neg_queries / (np.linalg.norm(neg_queries, axis=-1, keepdims=True) + 1e-8)
# Compute similarity only for matched pairs
matched_neg_q = neg_q[nearest_neg_idx] # (N, D)
query_sim = (pos_q * matched_neg_q).sum(axis=-1) # (N,) cosine similarity
# Check semantic condition
semantically_similar = query_sim > similarity_threshold # (N,)
# === Step 3: Joint Decision ===
# Suppress only if BOTH conditions are met
should_suppress = spatially_close & semantically_similar # (N,)
# === Filter ===
keep_mask = ~should_suppress
filtered_points = np.array(points)[keep_mask].tolist()
filtered_indices = np.where(keep_mask)[0].tolist()
# === Suppression Info ===
suppression_info = {
"nearest_neg_idx": nearest_neg_idx.tolist(),
"nearest_neg_dist": nearest_neg_dist.tolist(),
"query_similarity": query_sim.tolist(),
"spatially_close": spatially_close.tolist(),
"semantically_similar": semantically_similar.tolist(),
"suppressed_indices": np.where(should_suppress)[0].tolist(),
}
return filtered_points, filtered_indices, suppression_info
def count_objects(image, pos_caption, neg_caption, box_threshold, point_radius, point_color):
"""
Main inference function for counting objects
Args:
image: Input PIL Image
pos_caption: Positive prompt (objects to count)
neg_caption: Negative prompt (objects to exclude)
box_threshold: Detection confidence threshold
point_radius: Radius of visualization points
point_color: Color of visualization points
Returns:
Annotated image and count
"""
global model, processor, device
if model is None:
load_model()
# Ensure image is RGB
if image.mode != "RGB":
image = image.convert("RGB")
# Ensure captions end with period
if not pos_caption.endswith('.'):
pos_caption = pos_caption + '.'
if neg_caption and not neg_caption.endswith('.'):
neg_caption = neg_caption + '.'
# Process positive caption
pos_inputs = processor(
images=image,
text=pos_caption,
return_tensors="pt",
padding=True
)
pos_inputs = pos_inputs.to(device)
pos_inputs['pixel_values'] = pos_inputs['pixel_values'].to(torch.bfloat16)
# Process negative caption if provided
use_neg = bool(neg_caption and neg_caption.strip() and neg_caption != '.')
if use_neg:
neg_inputs = processor(
images=image,
text=neg_caption,
return_tensors="pt",
padding=True
)
neg_inputs = {k: v.to(device) for k, v in neg_inputs.items()}
neg_inputs['pixel_values'] = neg_inputs['pixel_values'].to(torch.bfloat16)
# Add negative inputs to positive inputs dict
pos_inputs['neg_token_type_ids'] = neg_inputs['token_type_ids']
pos_inputs['neg_attention_mask'] = neg_inputs['attention_mask']
pos_inputs['neg_pixel_mask'] = neg_inputs['pixel_mask']
pos_inputs['neg_pixel_values'] = neg_inputs['pixel_values']
pos_inputs['neg_input_ids'] = neg_inputs['input_ids']
pos_inputs['use_neg'] = True
else:
pos_inputs['use_neg'] = False
# Run inference
with torch.no_grad():
outputs = model(**pos_inputs)
# Post-process outputs
# positive prediction
outputs["pred_points"] = outputs["pred_boxes"][:, :, :2]
outputs["pred_logits"] = outputs["logits"]
threshold = box_threshold if box_threshold > 0 else model.box_threshold
pos_queries = outputs["pos_queries"].squeeze(0).float()
neg_queries = outputs["neg_queries"].squeeze(0).float()
pos_queries = pos_queries[-1].squeeze(0)
neg_queries = neg_queries[-1].squeeze(0)
pos_queries = pos_queries.unsqueeze(0)
neg_queries = neg_queries.unsqueeze(0)
results = post_process_grounded_object_detection_with_queries(outputs, pos_queries, box_threshold=threshold)[0]
boxes = results["boxes"]
boxes = [box.tolist() for box in boxes]
points = [[box[0], box[1]] for box in boxes]
# negative prediction
if "neg_pred_boxes" in outputs and "neg_logits" in outputs:
neg_outputs = outputs.copy()
neg_outputs["pred_boxes"] = outputs["neg_pred_boxes"]
neg_outputs["logits"] = outputs["neg_logits"]
neg_outputs["pred_points"] = outputs["neg_pred_boxes"][:, :, :2]
neg_outputs["pred_logits"] = outputs["neg_logits"]
neg_results = post_process_grounded_object_detection_with_queries(neg_outputs, neg_queries, box_threshold=threshold)[0]
neg_boxes = neg_results["boxes"]
neg_boxes = [box.tolist() for box in neg_boxes]
neg_points = [[box[0], box[1]] for box in neg_boxes]
pos_queries = results["queries"]
neg_queries = neg_results["queries"]
pos_queries = pos_queries.cpu().numpy()
neg_queries = neg_queries.cpu().numpy()
img_size = image.size
# filtered_points, kept_indices = filter_points_by_negative(
# points,
# neg_points,
# image_size=img_size,
# pixel_threshold=5
# )
filtered_points, kept_indices, suppression_info = discriminative_point_suppression(
points,
neg_points,
pos_queries,
neg_queries,
image_size=img_size,
pixel_threshold=5,
similarity_threshold=0.3,
)
filtered_boxes = [boxes[i] for i in kept_indices]
if "scores" in results:
filtered_scores = [results["scores"][i].item() for i in kept_indices]
points = filtered_points
boxes = filtered_boxes
# Visualize results
img_w, img_h = image.size
img_draw = image.copy()
draw = ImageDraw.Draw(img_draw)
for point in points:
x = point[0] * img_w
y = point[1] * img_h
draw.ellipse(
[x - point_radius, y - point_radius, x + point_radius, y + point_radius],
fill=point_color
)
# for point in neg_points:
# x = point[0] * img_w
# y = point[1] * img_h
# draw.ellipse(
# [x - point_radius, y - point_radius, x + point_radius, y + point_radius],
# fill="red"
# )
count = len(points)
return img_draw, f"Count: {count}"
# Create Gradio interface
def create_demo():
with gr.Blocks(title="CountEx: Discriminative Visual Counting") as demo:
gr.Markdown("""
# CountEx: Fine-Grained Counting via Exemplars and Exclusion
Count specific objects in images using positive and negative text prompts.
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Input Image")
pos_caption = gr.Textbox(
label="Positive Prompt",
placeholder="e.g., Green Apple",
value="Pos Caption Here."
)
neg_caption = gr.Textbox(
label="Negative Prompt (optional)",
placeholder="e.g., Red Apple",
value="None."
)
box_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.42,
step=0.01,
label="Detection Threshold (0.42 = use model default)"
)
point_radius = gr.Slider(
minimum=1,
maximum=20,
value=5,
step=1,
label="Point Radius"
)
point_color = gr.Dropdown(
choices=["blue", "red", "green", "yellow", "cyan", "magenta", "white"],
value="blue",
label="Point Color"
)
submit_btn = gr.Button("Count Objects", variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(type="pil", label="Result")
count_output = gr.Textbox(label="Count Result")
# Example images
# ["examples/in_the_wild.jpg", "Green plastic cup.", "Blue plastic cup."],
gr.Examples(
examples=[
["examples/apples.png", "apple.", "Green apple."],
["examples/apple.jpg", "apple.", "red apple."],
["examples/black_beans.jpg", "Black bean.", "Soy bean."],
["examples/candy.jpg", "Brown coffee candy.", "Black coffee candy."],
["examples/strawberry.jpg", "strawberry and blueberry.", "strawberry."],
["examples/strawberry2.jpg", "strawberry and blueberry.", "strawberry."],
["examples/women.jpg", "person.", "woman."],
["examples/boat-1.jpg", "boat.", "blue boat."],
],
inputs=[input_image, pos_caption, neg_caption],
outputs=[output_image, count_output],
fn=count_objects,
cache_examples=False,
)
submit_btn.click(
fn=count_objects,
inputs=[input_image, pos_caption, neg_caption, box_threshold, point_radius, point_color],
outputs=[output_image, count_output]
)
return demo
if __name__ == "__main__":
# Load model at startup
print("Loading model...")
load_model()
print("Model loaded!")
# Create and launch demo
demo = create_demo()
demo.launch() |