MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation
Paper
•
2205.09853
•
Published
A deep learning model for solar radiation nowcasting using modified MCVD model, a kind of DDPM model for video generation. The model predicts clearsky index and converts it to solar radiation for up to 6 or 36 time steps ahead.
Below is an example of DDPM generation process for 1-hour solar radiation prediction (6 time steps). The total iteration is 1000 steps, and every 50 steps are shown in the gif.
This repository contains two trained models (1hr & 6hr) for solar radiation forecasting:
The model uses multiple input sources:
git lfs install
git clone <repository-url>
cd Diffusion_SolRad
git lfs pull
git lfs ls-files # confirm whether models weights & sample data are downloaded
pip install -r requirements.txt
Run solar radiation prediction using the pre-trained models:
python inference.py --pred-hr [1hr/6hr] --pred-mode [DDPM/DDIM] --basetime 202504131100
pred-mode: Choose between DDPM or DDIM sampling methods (default: DDPM)pred-hr: Choose between 1hr or 6hr prediction models (default: 1hr)--basetime: Timestamp for input data in format YYYYMMDDHHMM (default: 202504131100)# DDIM sampling method for 1-hour prediction
python inference.py --pred-hr 1hr --pred-mode DDIM --basetime 202507151200
The repository includes sample data files:
sample_202504131100.npzsample_202504161200.npzsample_202507151200.npzPre-trained weights are available for both models:
model_weights/ft06_01hr/weights.ckptmodel_weights/ft36_06hr/weights.ckptThis project is released under the MIT License.