YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
iNosh AI v3 - PyTorch LoRA Adapter
Model Type: LoRA Adapter for Llama-3.2-1B-Instruct Base Model: unsloth/Llama-3.2-1B-Instruct Format: PyTorch (safetensors) Size: 22 MB (5.6M trainable parameters) Training: MLX LoRA fine-tuning (iteration 100, val loss 0.164)
Usage (PyTorch/Transformers)
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
# Load base model
base_model = "unsloth/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.float16,
device_map="auto",
)
# Load LoRA adapter
model = PeftModel.from_pretrained(model, "vasu24/inosh-ai-v3-pytorch")
# Generate
messages = [
{"role": "system", "content": "You are GROOT, an AI kitchen assistant..."},
{"role": "user", "content": "Add 500g chicken to pantry"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=200)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
Deployment
- Modal: Serverless deployment
- HuggingFace Inference Endpoints: Dedicated endpoints
- Replicate: Pay-per-use API
- On-device: Convert to GGUF for mobile
Training Details
See main documentation at: https://huggingface.co/vasu24/inosh-ai-v3
- Downloads last month
- 22
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support