am / README.md
omarkamali's picture
Upload all models and assets for am (latest)
d99f746 verified
---
language: am
language_name: Amharic
language_family: semitic_ethiopic
tags:
- wikilangs
- nlp
- tokenizer
- embeddings
- n-gram
- markov
- wikipedia
- feature-extraction
- sentence-similarity
- tokenization
- n-grams
- markov-chain
- text-mining
- fasttext
- babelvec
- vocabulous
- vocabulary
- monolingual
- family-semitic_ethiopic
license: mit
library_name: wikilangs
pipeline_tag: text-generation
datasets:
- omarkamali/wikipedia-monthly
dataset_info:
name: wikipedia-monthly
description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
- name: best_compression_ratio
type: compression
value: 3.293
- name: best_isotropy
type: isotropy
value: 0.9137
- name: vocabulary_size
type: vocab
value: 0
generated: 2026-01-03
---
# Amharic - Wikilangs Models
## Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Amharic** Wikipedia data.
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
## ๐Ÿ“‹ Repository Contents
### Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
![Performance Dashboard](visualizations/performance_dashboard.png)
### Analysis and Evaluation
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
- [7. Summary & Recommendations](#7-summary--recommendations)
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
- [Visualizations Index](#visualizations-index)
---
## 1. Tokenizer Evaluation
![Tokenizer Compression](visualizations/tokenizer_compression.png)
![Tokenizer Fertility](visualizations/tokenizer_fertility.png)
![Tokenizer OOV](visualizations/tokenizer_oov.png)
![Total Tokens](visualizations/tokenizer_total_tokens.png)
### Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|------------|-------------|---------------|----------|--------------|
| **8k** | 2.438x | 2.44 | 0.1566% | 682,453 |
| **16k** | 2.748x | 2.75 | 0.1765% | 605,553 |
| **32k** | 3.035x | 3.04 | 0.1950% | 548,316 |
| **64k** | 3.293x ๐Ÿ† | 3.29 | 0.2116% | 505,279 |
### Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
**Sample 1:** `แŠ“แ‹แˆฉ แ‰ แˆฐแˆ‹แˆ›แ‹Š แ‹แ‰…แ‹ซแŠ–แˆต แ‹จแˆšแŒˆแŠ แ‹ฐแˆดแ‰ต แŠ แŒˆแˆญ แАแ‹แข แ‹‹แŠ“ แŠจแ‰ฐแˆ› แ‹จแˆˆแ‹แˆแฃ แ‰ตแˆแ‰ แŠจแ‰ฐแˆ› แŒแŠ• แ‹ซแˆฌแŠ• แАแ‹แข`
| Vocab | Tokens | Count |
|-------|--------|-------|
| 8k | `โ–แŠ“ แ‹ แˆฉ โ–แ‰ แˆฐ แˆ‹แˆ›แ‹Š โ–แ‹แ‰…แ‹ซแŠ–แˆต โ–แ‹จแˆšแŒˆแŠ โ–แ‹ฐแˆดแ‰ต โ–แŠ แŒˆแˆญ โ–แАแ‹แข ... (+10 more)` | 20 |
| 16k | `โ–แŠ“ แ‹แˆฉ โ–แ‰ แˆฐแˆ‹แˆ›แ‹Š โ–แ‹แ‰…แ‹ซแŠ–แˆต โ–แ‹จแˆšแŒˆแŠ โ–แ‹ฐแˆดแ‰ต โ–แŠ แŒˆแˆญ โ–แАแ‹แข โ–แ‹‹แŠ“ โ–แŠจแ‰ฐแˆ› ... (+8 more)` | 18 |
| 32k | `โ–แŠ“แ‹แˆฉ โ–แ‰ แˆฐแˆ‹แˆ›แ‹Š โ–แ‹แ‰…แ‹ซแŠ–แˆต โ–แ‹จแˆšแŒˆแŠ โ–แ‹ฐแˆดแ‰ต โ–แŠ แŒˆแˆญ โ–แАแ‹แข โ–แ‹‹แŠ“ โ–แŠจแ‰ฐแˆ› โ–แ‹จแˆˆแ‹แˆแฃ ... (+6 more)` | 16 |
| 64k | `โ–แŠ“แ‹แˆฉ โ–แ‰ แˆฐแˆ‹แˆ›แ‹Š โ–แ‹แ‰…แ‹ซแŠ–แˆต โ–แ‹จแˆšแŒˆแŠ โ–แ‹ฐแˆดแ‰ต โ–แŠ แŒˆแˆญ โ–แАแ‹แข โ–แ‹‹แŠ“ โ–แŠจแ‰ฐแˆ› โ–แ‹จแˆˆแ‹แˆแฃ ... (+5 more)` | 15 |
**Sample 2:** `แŠ แˆพแŠซ แŠจ277 แˆตแŠจ 240 แ‹“แŠญแˆแ‰ . แ‹ตแˆจแˆต แ‹จแˆ•แŠ•แ‹ต แŠ แŒˆแˆญ แˆ›แ‹แˆญแ‹ซ แˆ˜แŠ•แŒแˆฅแ‰ต แŠ•แŒ‰แˆฅ แАแ‰ แˆญแข แ‰ 271 แ‹“แŠญแˆแ‰ . แŒแ‹ตแˆ แ‹จแ‰กแ‹ฒแˆตแˆ แ‰ฐแŠจแ‰ณแ‹ญ...`
| Vocab | Tokens | Count |
|-------|--------|-------|
| 8k | `โ–แŠ  แˆพ แŠซ โ–แŠจ 2 7 7 โ–แˆต แŠจ โ– ... (+42 more)` | 52 |
| 16k | `โ–แŠ  แˆพ แŠซ โ–แŠจ 2 7 7 โ–แˆต แŠจ โ– ... (+39 more)` | 49 |
| 32k | `โ–แŠ แˆพ แŠซ โ–แŠจ 2 7 7 โ–แˆต แŠจ โ– 2 ... (+38 more)` | 48 |
| 64k | `โ–แŠ แˆพแŠซ โ–แŠจ 2 7 7 โ–แˆตแŠจ โ– 2 4 0 ... (+34 more)` | 44 |
**Sample 3:** `แŠ”แ‰ตแแˆŠแŠญแˆต (แŠฅแŠ•แŒแˆŠแ‹แŠ›: Netflix) แ‰ แˆ˜แˆตแˆ˜แˆญ แˆ‹แ‹ญ แŠแˆแˆžแ‰ฝแŠ• แŠฅแŠ“ แ‹จแ‰ดแˆŒแ‰ชแ‹ฅแŠ• แ•แˆฎแŒแˆซแˆžแ‰ฝแŠ• แˆˆแˆ˜แˆ˜แˆแŠจแ‰ต แ‹จแˆšแ‹ซแˆตแ‰ฝแˆ แ‹จแ‹ฅแˆจแ‰ต แŠ แŒˆแˆ...`
| Vocab | Tokens | Count |
|-------|--------|-------|
| 8k | `โ–แŠ” แ‰ต แ แˆŠ แŠญแˆต โ–( แŠฅแŠ•แŒแˆŠแ‹แŠ› : โ–n et ... (+36 more)` | 46 |
| 16k | `โ–แŠ” แ‰ตแ แˆŠ แŠญแˆต โ–( แŠฅแŠ•แŒแˆŠแ‹แŠ› : โ–n et fl ... (+29 more)` | 39 |
| 32k | `โ–แŠ” แ‰ตแ แˆŠแŠญแˆต โ–( แŠฅแŠ•แŒแˆŠแ‹แŠ› : โ–net fl ix ) ... (+23 more)` | 33 |
| 64k | `โ–แŠ” แ‰ตแ แˆŠแŠญแˆต โ–( แŠฅแŠ•แŒแˆŠแ‹แŠ› : โ–net flix ) โ–แ‰ แˆ˜แˆตแˆ˜แˆญ ... (+16 more)` | 26 |
### Key Findings
- **Best Compression:** 64k achieves 3.293x compression
- **Lowest UNK Rate:** 8k with 0.1566% unknown tokens
- **Trade-off:** Larger vocabularies improve compression but increase model size
- **Recommendation:** 32k vocabulary provides optimal balance for production use
---
## 2. N-gram Model Evaluation
![N-gram Perplexity](visualizations/ngram_perplexity.png)
![N-gram Unique](visualizations/ngram_unique.png)
![N-gram Coverage](visualizations/ngram_coverage.png)
### Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|--------|---------|------------|---------|----------------|------------------|-------------------|
| **2-gram** | Word | 9,101 | 13.15 | 28,185 | 19.6% | 39.5% |
| **2-gram** | Subword | 2,069 ๐Ÿ† | 11.01 | 23,787 | 34.1% | 69.3% |
| **3-gram** | Word | 9,934 | 13.28 | 35,745 | 22.2% | 40.6% |
| **3-gram** | Subword | 19,035 | 14.22 | 153,217 | 11.9% | 35.6% |
| **4-gram** | Word | 36,871 | 15.17 | 91,072 | 13.9% | 25.7% |
| **4-gram** | Subword | 94,475 | 16.53 | 551,504 | 6.6% | 19.5% |
| **5-gram** | Word | 32,696 | 15.00 | 78,497 | 14.6% | 26.2% |
| **5-gram** | Subword | 213,435 | 17.70 | 879,311 | 5.0% | 14.3% |
### Top 5 N-grams by Size
**2-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `แ‹“ แˆ` | 8,266 |
| 2 | `แˆแˆณแˆŒ แАแ‹` | 5,623 |
| 3 | `แ‹จแŠ แˆ›แˆญแŠ› แˆแˆณแˆŒ` | 5,562 |
| 4 | `แŠฅ แŠค` | 4,014 |
| 5 | `แŠค แŠ ` | 3,948 |
**3-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `แ‹จแŠ แˆ›แˆญแŠ› แˆแˆณแˆŒ แАแ‹` | 5,562 |
| 2 | `แŠฅ แŠค แŠ ` | 3,896 |
| 3 | `แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™` | 3,454 |
| 4 | `แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ` | 3,051 |
| 5 | `แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ` | 2,530 |
**4-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `แ‹จแŠ แˆ›แˆญแŠ› แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™` | 3,452 |
| 2 | `แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ` | 2,530 |
| 3 | `แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜ แˆแˆณแˆŒ` | 2,115 |
| 4 | `แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜` | 2,111 |
| 5 | `แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ` | 1,854 |
**5-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `แ‹จแŠ แˆ›แˆญแŠ› แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ` | 2,529 |
| 2 | `แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜` | 2,111 |
| 3 | `แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜ แˆแˆณแˆŒ` | 2,111 |
| 4 | `แˆ˜แ‹ฐแ‰ฅ แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“` | 1,812 |
| 5 | `แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ` | 1,811 |
**2-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `_ แ‹จ` | 172,656 |
| 2 | `แ‰ต _` | 146,889 |
| 3 | `_ แ‰ ` | 142,558 |
| 4 | `แŠ• _` | 134,273 |
| 5 | `_ แŠ ` | 115,168 |
**3-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `_ แŠฅ แŠ•` | 32,943 |
| 2 | `_ แА แ‹` | 26,886 |
| 3 | `_ แŠฅ แŠ“` | 24,633 |
| 4 | `แ‹ แข _` | 24,427 |
| 5 | `แŠฅ แŠ“ _` | 23,097 |
**4-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `_ แŠฅ แŠ“ _` | 22,966 |
| 2 | `_ แА แ‹ แข` | 19,603 |
| 3 | `แА แ‹ แข _` | 19,130 |
| 4 | `_ แŠฅ แŠ• แ‹ฐ` | 14,167 |
| 5 | `_ แˆ‹ แ‹ญ _` | 13,064 |
**5-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `_ แА แ‹ แข _` | 19,000 |
| 2 | `_ แ‹ แˆต แŒฅ _` | 9,650 |
| 3 | `แŠข แ‰ต แ‹ฎ แŒต แ‹ซ` | 7,988 |
| 4 | `_ แˆ แˆณ แˆŒ _` | 7,852 |
| 5 | `_ แŠฅ แŠ• แ‹ฐ _` | 6,562 |
### Key Findings
- **Best Perplexity:** 2-gram (subword) with 2,069
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
- **Coverage:** Top-1000 patterns cover ~14% of corpus
- **Recommendation:** 4-gram or 5-gram for best predictive performance
---
## 3. Markov Chain Evaluation
![Markov Entropy](visualizations/markov_entropy.png)
![Markov Contexts](visualizations/markov_contexts.png)
![Markov Branching](visualizations/markov_branching.png)
### Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
| **1** | Word | 0.7520 | 1.684 | 4.82 | 237,556 | 24.8% |
| **1** | Subword | 1.2212 | 2.331 | 17.49 | 2,857 | 0.0% |
| **2** | Word | 0.1473 | 1.108 | 1.28 | 1,142,374 | 85.3% |
| **2** | Subword | 1.0395 | 2.055 | 6.98 | 49,956 | 0.0% |
| **3** | Word | 0.0354 | 1.025 | 1.06 | 1,462,526 | 96.5% |
| **3** | Subword | 0.6359 | 1.554 | 3.37 | 348,652 | 36.4% |
| **4** | Word | 0.0157 ๐Ÿ† | 1.011 | 1.02 | 1,537,232 | 98.4% |
| **4** | Subword | 0.4526 | 1.368 | 2.15 | 1,173,222 | 54.7% |
### Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
**Context Size 1:**
1. `แАแ‹ แ‹ซแŠฝแ‹ฑแŠ• แˆŠแˆ แ‹“แŠญแˆแ‰  แ‹จแАแŒˆแˆ  แ‹จแˆŠแ’แ‰ต แŠฅแˆฝแ‰ณแˆญแŠ• แŠฅแˆญแ‹ณแ‰ณ แ‹จแˆ›แŒแŠ˜แ‰ต แˆ˜แ‰ฅแ‰ฑ แ‹จแ‰ฐแŒ แ‰ แ‰€ แˆตแˆˆแˆ†แА แˆแŒฝแˆž แ‹ญแ‰ แˆ‹แˆ แแˆฌแ‹ แˆณแ‹ญแ‰ แˆตแˆ`
2. `แŠฅแŠ“ แŠขแŠฎแŠ–แˆšแ‹ซแ‹Š แŠฅแŠ“ แŠ แˆ˜แˆˆแŠซแŠจแ‰ถแ‰ฝแŠ• แˆˆแˆ˜แŒแˆˆแŒฝ แ‹ญแ‹ˆแ‹ณแˆ แ‹จแ‹ˆแ‹ณแŒ…แˆฝ แ‹จแˆ˜แˆ แ‹ˆแˆชแ‹ซแ‹ แˆ›แ‹•แ‰ แˆแˆ แ‹ซแˆ›แ‰ณแ‹‹แˆ แ‹ณแŒแˆ˜แŠ›แˆ แ‹จแŠจแ‰ แˆจแ‹แŠ• แ‹จแˆ˜แˆแŠญแ‰ฐแŠ›แ‹ŽแŠ• แ‹จแ‰ƒแˆ แ‰ตแˆญแŒ‰แˆ แˆŠแ‹ซแ‹ณแ‰ฅแˆญ`
3. `แˆ‹แ‹ญ แŠ แˆแƒแ€แˆแŠ• แ‰ แˆซแˆต แˆ˜แ‰ฐแˆ›แˆ˜แŠ• แŠ แ‹ญแ‰ฝแˆ‰แˆ แŠจแˆšแˆˆแ‹ แ‰ƒแˆ แ‰ แˆฒแ‰ชแˆ แ‹ฐแŒแˆž แˆˆแ‹จแ‰ฐแˆˆแ‹ซแ‹ฉ แ‰ แŠ แแˆชแŠซ แ‹แˆตแŒฅ แ‹จแ‰ฐแˆจแŒ‹แŒˆแŒ  แ‹ญแˆ˜แˆตแˆ‹แˆ แŠจแ‹šแ‹ซแˆ แ‹จแˆถแ‰ชแ‹จแ‰ต`
**Context Size 2:**
1. `แ‹“ แˆ แ‰ แŠ‹แˆ‹ แˆˆแˆ†แŠ‘แ‰ต แ‹“แˆ˜แ‰ณแ‰ต แŒแŠ• แ‰ แˆŒแˆ‹ แ‰€แŠ• แˆ‹แ‹ญ แˆ˜แˆ†แŠ‘แŠ• แ‹ญแŒˆแŠ•แ‹˜แ‰ก แˆˆแŠฅแАแ‹šแ‹ซ แ‹“แˆ˜แ‰ถแ‰ฝ แ‹ญแˆ… แ‹จแ‰€แŠ• แˆ˜แˆˆแ‹ˆแŒซ แˆ˜แˆฃแˆญแ‹ซ`
2. `แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ แˆแŠ“แˆแ‰ฃแ‰ตแˆ แŠจแ‰ค`
3. `แ‹จแŠ แˆ›แˆญแŠ› แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆšแˆตแŒฅแˆญ แŠ แ‹ญแ‹ฐแ‰ แ‰… แ‹ญแˆ˜แˆตแˆ‹แˆ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ`
**Context Size 3:**
1. `แ‹จแŠ แˆ›แˆญแŠ› แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ แˆแŒแ‰ฃแˆญ แˆณแ‹ญแŠ–แˆญ แˆตแˆ แŠฅแŠ•แ‹ฐแˆ›แˆˆแ‰ต แАแ‹‰`
2. `แŠฅ แŠค แŠ  แ‹จแŠฅแŠ•แŒแˆŠแ‹ แŠซแˆ‹แŠ•แ‹ฐแˆญ แˆ›แˆปแˆปแ‹ซ แ‰ฐแŠจแ‰ตแˆŽ แ‹จแŠ•แŒแˆฅแ‰ฒแ‰ฑแŠ• แˆžแ‰ต แˆ˜แˆ˜แ‹แŒˆแ‰ฅ แ‹จแ‰ฐแˆˆแˆ˜แ‹ฐ แ‰ขแˆ†แŠ•แˆ แŠฅแŠ•แŒแˆŠแ‹ แˆ˜แŒ‹แ‰ขแ‰ต 25 แ‰€แŠ• แˆ›แˆˆแ‰ต แАแ‹`
3. `แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แ‹จแ‰ฐแ‹ซแ‹ซแ‹™ แАแŒˆแˆฎแ‰ฝแŠ• แˆˆแˆ˜แˆˆแ‹จแ‰ต แ‹จแˆšแ‹ซแŒˆแˆˆแŒแˆ แˆแˆŠแŒฅ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ แˆแˆณแˆŒ`
**Context Size 4:**
1. `แ‹จแŠ แˆ›แˆญแŠ› แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ แ‰ แˆฌ แŠซแˆซแŒ แ‹ญแ‹‰แˆ‹แˆ`
2. `แˆแˆณแˆŒ แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜ แˆแˆณแˆŒ`
3. `แАแ‹ แ‰ตแˆญแŒ‰แˆ™ แˆ˜แ‹ฐแ‰ฅ แ‹ซแˆแ‰ฐแ‰ฐแˆจแŒŽแˆ˜ แˆแˆณแˆŒ แˆ˜แ‹ฐแ‰ฅ แ‰ฐแˆจแ‰ตแŠ“ แˆแˆณแˆŒ แˆดแ‰ต แˆแˆ‰แŠ• แ‰ปแ‹ญ แŠ“แ‰ต`
### Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
**Context Size 1:**
1. `_แ‰ แ‹ญแˆแАแ‹‰แกแ‰ขแ‰ขแ‰ตแˆญ_แ‹จแ‰ฐแ…แˆ€`
2. `แŠ•_แŠฅแŠ•แ‹‹แŒฎแ‰ฝแ‰ต_crcue_แŠ `
3. `แ‰ต_แ‹_แˆแˆญแ‹•แˆตแŠญแˆŽ_แŠ แˆต_po`
**Context Size 2:**
1. `_แ‹จแŠขแ‰ตแ‹ฎแŒตแ‹ซ_แ‹˜แŠ•_แˆณแ‹ญแŠ•แˆต_แ‰ฐ`
2. `แ‰ต_แАแ‹แข_แŠฅแŠ•แŒแˆฅแ‰ณแ‰ต_แŠ“แ‹ญแ‰ตแ‹ต`
3. `_แ‰ แ‹ˆแˆซ_แˆ…แ‰ฅแˆจ_แ‹จแˆณแˆแŠ•_แ‹ˆแ‹ญ_`
**Context Size 3:**
1. `_แŠฅแŠ•แ‹ฒแˆ…แกแˆ˜แˆแŠญ_แˆแˆ‹แˆ_แ‹แŠ•แˆ_`
2. `_แАแ‹แข_แŠฅแŠ•แ‹ฒแˆ…แˆแกแ‹…แˆ‰แก_แ‹ฐแŒแˆž`
3. `_แŠฅแŠ“_แŠจแ‰ฐแ‹ซแ‹™_แŠฅแŠ•แ‹ฒแˆธแŠจแˆ™แŠ แ‰ธแ‹`
**Context Size 4:**
1. `_แŠฅแŠ“_แ‰แˆณแ‹Š_แАแŒˆแˆฅแ‰ณแ‰ต_แˆ˜แˆฝแŠ›_แ‰ต`
2. `_แАแ‹แข_แŠจแŒแ‰ฅแŒฝ_แ‹˜แ‹แ‹ต_แŒญแАแ‹_แА`
3. `แАแ‹แข_แˆแˆ‰แˆ_แ‹จแ‰ฐแАแˆณ_แ‰ แŠ‹แˆ‹แˆ_แ‹ซ`
### Key Findings
- **Best Predictability:** Context-4 (word) with 98.4% predictability
- **Branching Factor:** Decreases with context size (more deterministic)
- **Memory Trade-off:** Larger contexts require more storage (1,173,222 contexts)
- **Recommendation:** Context-3 or Context-4 for text generation
---
## 4. Vocabulary Analysis
![Zipf's Law](visualizations/zipf_law.png)
![Top Words](visualizations/top20_words.png)
![Coverage Curve](visualizations/vocab_coverage.png)
### Statistics
| Metric | Value |
|--------|-------|
| Vocabulary Size | 100,186 |
| Total Tokens | 1,652,256 |
| Mean Frequency | 16.49 |
| Median Frequency | 3 |
| Frequency Std Dev | 176.36 |
### Most Common Words
| Rank | Word | Frequency |
|------|------|-----------|
| 1 | แАแ‹ | 26,831 |
| 2 | แŠฅแŠ“ | 23,089 |
| 3 | แˆ‹แ‹ญ | 13,382 |
| 4 | แˆแˆณแˆŒ | 11,608 |
| 5 | แ‹แˆตแŒฅ | 9,891 |
| 6 | แАแ‰ แˆญ | 9,130 |
| 7 | แ‹“ | 8,627 |
| 8 | แ‹ˆแ‹ฐ | 8,565 |
| 9 | แˆ | 8,525 |
| 10 | แŠฅแŠ•แ‹ฐ | 6,906 |
### Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|------|------|-----------|
| 1 | แŒ‚แŠ’แŠซ | 2 |
| 2 | แ‹ฒแŠ’แŠซแˆ‹ | 2 |
| 3 | แ‹ˆแˆตแ‹ฐแˆฝ | 2 |
| 4 | แŠ แŠ•แŠณแŠณ | 2 |
| 5 | แˆ˜แ‹ณแˆแ‹ˆ | 2 |
| 6 | แˆจแ‹ตแŠฅ | 2 |
| 7 | แŠ แŠ•แ‹ฐแŠ›แ‹ญแ‰ฑ | 2 |
| 8 | แ‹ˆแ‹ฐแˆฐแˆแ | 2 |
| 9 | แ‹จแŠ’แŠฎแ–แˆŠแˆต | 2 |
| 10 | แŒ‚แˆแŠ“แ‹šแ‹จแˆ | 2 |
### Zipf's Law Analysis
| Metric | Value |
|--------|-------|
| Zipf Coefficient | 0.9364 |
| Rยฒ (Goodness of Fit) | 0.995158 |
| Adherence Quality | **excellent** |
### Coverage Analysis
| Top N Words | Coverage |
|-------------|----------|
| Top 100 | 22.7% |
| Top 1,000 | 45.8% |
| Top 5,000 | 66.2% |
| Top 10,000 | 74.9% |
### Key Findings
- **Zipf Compliance:** Rยฒ=0.9952 indicates excellent adherence to Zipf's law
- **High Frequency Dominance:** Top 100 words cover 22.7% of corpus
- **Long Tail:** 90,186 words needed for remaining 25.1% coverage
---
## 5. Word Embeddings Evaluation
![Embedding Isotropy](visualizations/embedding_isotropy.png)
![Similarity Matrix](visualizations/embedding_similarity.png)
![t-SNE Words](visualizations/tsne_words.png)
![t-SNE Sentences](visualizations/tsne_sentences.png)
### 5.1 Cross-Lingual Alignment
![Alignment Quality](visualizations/embedding_alignment_quality.png)
![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
### 5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|-------|-----------|----------|------------------|---------------|----------------|
| **mono_32d** | 32 | 0.9098 | 0.3240 | N/A | N/A |
| **mono_64d** | 64 | 0.9137 ๐Ÿ† | 0.2319 | N/A | N/A |
| **mono_128d** | 128 | 0.8452 | 0.1755 | N/A | N/A |
| **aligned_32d** | 32 | 0.9098 | 0.3259 | 0.0200 | 0.1420 |
| **aligned_64d** | 64 | 0.9137 | 0.2299 | 0.0480 | 0.1860 |
| **aligned_128d** | 128 | 0.8452 | 0.1764 | 0.0840 | 0.2800 |
### Key Findings
- **Best Isotropy:** mono_64d with 0.9137 (more uniform distribution)
- **Semantic Density:** Average pairwise similarity of 0.2439. Lower values indicate better semantic separation.
- **Alignment Quality:** Aligned models achieve up to 8.4% R@1 in cross-lingual retrieval.
- **Recommendation:** 128d aligned for best cross-lingual performance
---
## 6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
### 6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|--------|-------|----------------|----------------|
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | **0.840** | High formulaic/idiomatic content | - |
### 6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
*No productive affixes detected.*
### 6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|------|----------|------------------|----------|
| `แŠฅแŠ•แ‹ฐแˆš` | 2.30x | 158 contexts | แŠฅแŠ•แ‹ฐแˆšแˆน, แŠฅแŠ•แ‹ฐแˆšแˆป, แŠฅแŠ•แ‹ฐแˆšแˆ |
| `แˆญแˆตแ‰ฒแ‹ซ` | 2.39x | 61 contexts | แŠญแˆญแˆตแ‰ฒแ‹ซ, แŠจแˆญแˆตแ‰ฒแ‹ซแŠ•, แŠญแˆญแˆตแ‰ฒแ‹ซแŠ• |
| `แ‰ตแ‹ฎแŒตแ‹ซ` | 2.17x | 57 contexts | แŠขแ‰ตแ‹ฎแŒตแ‹ซ, แŠฅแ‰ตแ‹ฎแŒตแ‹ซ, แŠขแ‰ตแ‹ฎแŒตแ‹ซแŠ• |
| `แˆ˜แŠ•แŒแˆต` | 2.10x | 49 contexts | แˆ˜แŠ•แŒแˆตแ‰ฑ, แˆ˜แŠ•แŒแˆตแ‰ฐ, แˆ˜แŠ•แŒแˆตแ‰ต |
| `แŒแ‹šแŠ แ‰ฅ` | 2.58x | 23 contexts | แŠฅแŒแ‹šแŠ แ‰ฅแˆแˆญ, แŠฅแŒแ‹šแŠ แ‰ฅแˆ”แˆญ, แŠฅแŒแ‹šแŠ แ‰ฅแˆ„แˆญ |
| `แŠขแ‰ตแ‹ฎแŒต` | 2.08x | 46 contexts | แŠขแ‰ตแ‹ฎแŒตแ‹ซ, แŠขแ‰ตแ‹ฎแŒตแ‹ซแŠ•, แŠขแ‰ตแ‹ฎแŒตแ‹ซแŠ“ |
| `แŠฅแŠ•แŒแˆŠ` | 2.00x | 52 contexts | แŠฅแŠ•แŒแˆŠแ‹, แŠฅแŠ•แŒแˆŠแ‹™, แŠฅแŠ•แŒแˆŠแŠ› |
| `แˆแˆจแŠ•แˆณ` | 2.23x | 34 contexts | แˆแˆจแŠ•แˆณแ‹Š, แˆแˆจแŠ•แˆณแ‹ญ, แŠจแˆแˆจแŠ•แˆณแ‹ฉ |
| `แˆ˜แŠ•แŒแˆฅ` | 2.04x | 46 contexts | แˆ˜แŠ•แŒแˆฅแ‰ฑ, แˆ˜แŠ•แŒแˆฅแ‰ต, แˆ˜แŠ•แŒแˆฅแ‰ฐ |
| `tion` | 2.71x | 17 contexts | action, nation, section |
| `แŠ แˆตแ‰ฐแ‹ณ` | 2.21x | 33 contexts | แŠ แˆตแ‰ฐแ‹ณแ‹ฐแŒ‰, แŠ แˆตแ‰ฐแ‹ณแ‹ฐแˆช, แŠ แˆตแ‰ฐแ‹ณแ‹ฐแŒ“ |
| `แŒแˆŠแ‹แŠ›` | 2.54x | 19 contexts | แŠฅแŠ•แŒแˆŠแ‹แŠ›, แ‰ แŠฅแŠ•แŒแˆŠแ‹แŠ›, แŠขแŠ•แŒแˆŠแ‹แŠ›แ‹ |
### 6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
*No significant affix co-occurrences detected.*
### 6.5 Recursive Morpheme Segmentation
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
*Insufficient data for recursive segmentation.*
### 6.6 Linguistic Interpretation
> **Automated Insight:**
The language Amharic shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
---
## 7. Summary & Recommendations
![Performance Dashboard](visualizations/performance_dashboard.png)
### Production Recommendations
| Component | Recommended | Rationale |
|-----------|-------------|-----------|
| Tokenizer | **64k BPE** | Best compression (3.29x) |
| N-gram | **2-gram** | Lowest perplexity (2,069) |
| Markov | **Context-4** | Highest predictability (98.4%) |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
---
## Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
### Tokenizer Metrics
**Compression Ratio**
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
>
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
>
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
**Average Token Length (Fertility)**
> *Definition:* Mean number of characters per token produced by the tokenizer.
>
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
>
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
**Unknown Token Rate (OOV Rate)**
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
>
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
>
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
### N-gram Model Metrics
**Perplexity**
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
>
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
>
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
**Entropy**
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
>
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
>
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
**Coverage (Top-K)**
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
>
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
>
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
### Markov Chain Metrics
**Average Entropy**
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
>
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
>
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
**Branching Factor**
> *Definition:* Average number of unique next tokens observed for each context.
>
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
>
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
**Predictability**
> *Definition:* Derived metric: (1 - normalized_entropy) ร— 100%. Indicates how deterministic the model's predictions are.
>
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
>
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
### Vocabulary & Zipf's Law Metrics
**Zipf's Coefficient**
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
>
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
>
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
**Rยฒ (Coefficient of Determination)**
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
>
> *Intuition:* Rยฒ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
>
> *What to seek:* Rยฒ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
**Vocabulary Coverage**
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
>
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
>
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
### Word Embedding Metrics
**Isotropy**
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
>
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
>
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
**Average Norm**
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
>
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
>
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
**Cosine Similarity**
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
>
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
>
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
**t-SNE Visualization**
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
>
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
>
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
### General Interpretation Guidelines
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
### Visualizations Index
| Visualization | Description |
|---------------|-------------|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
---
## About This Project
### Data Source
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
### Project
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
### Maintainer
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
### Citation
If you use these models in your research, please cite:
```bibtex
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
```
### License
MIT License - Free for academic and commercial use.
### Links
- ๐ŸŒ Website: [wikilangs.org](https://wikilangs.org)
- ๐Ÿค— Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
- ๐Ÿ“Š Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
- ๐Ÿ‘ค Author: [Omar Kamali](https://huggingface.co/omarkamali)
- ๐Ÿค Sponsor: [Featherless AI](https://featherless.ai)
---
*Generated by Wikilangs Models Pipeline*
*Report Date: 2026-01-03 16:28:42*