|
|
--- |
|
|
language: am |
|
|
language_name: Amharic |
|
|
language_family: semitic_ethiopic |
|
|
tags: |
|
|
- wikilangs |
|
|
- nlp |
|
|
- tokenizer |
|
|
- embeddings |
|
|
- n-gram |
|
|
- markov |
|
|
- wikipedia |
|
|
- feature-extraction |
|
|
- sentence-similarity |
|
|
- tokenization |
|
|
- n-grams |
|
|
- markov-chain |
|
|
- text-mining |
|
|
- fasttext |
|
|
- babelvec |
|
|
- vocabulous |
|
|
- vocabulary |
|
|
- monolingual |
|
|
- family-semitic_ethiopic |
|
|
license: mit |
|
|
library_name: wikilangs |
|
|
pipeline_tag: text-generation |
|
|
datasets: |
|
|
- omarkamali/wikipedia-monthly |
|
|
dataset_info: |
|
|
name: wikipedia-monthly |
|
|
description: Monthly snapshots of Wikipedia articles across 300+ languages |
|
|
metrics: |
|
|
- name: best_compression_ratio |
|
|
type: compression |
|
|
value: 3.293 |
|
|
- name: best_isotropy |
|
|
type: isotropy |
|
|
value: 0.9137 |
|
|
- name: vocabulary_size |
|
|
type: vocab |
|
|
value: 0 |
|
|
generated: 2026-01-03 |
|
|
--- |
|
|
|
|
|
# Amharic - Wikilangs Models |
|
|
## Comprehensive Research Report & Full Ablation Study |
|
|
|
|
|
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Amharic** Wikipedia data. |
|
|
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. |
|
|
|
|
|
## ๐ Repository Contents |
|
|
|
|
|
### Models & Assets |
|
|
|
|
|
- Tokenizers (8k, 16k, 32k, 64k) |
|
|
- N-gram models (2, 3, 4, 5-gram) |
|
|
- Markov chains (context of 1, 2, 3, 4 and 5) |
|
|
- Subword N-gram and Markov chains |
|
|
- Embeddings in various sizes and dimensions (aligned and unaligned) |
|
|
- Language Vocabulary |
|
|
- Language Statistics |
|
|
|
|
|
 |
|
|
|
|
|
### Analysis and Evaluation |
|
|
|
|
|
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation) |
|
|
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) |
|
|
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation) |
|
|
- [4. Vocabulary Analysis](#4-vocabulary-analysis) |
|
|
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) |
|
|
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) |
|
|
- [7. Summary & Recommendations](#7-summary--recommendations) |
|
|
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) |
|
|
- [Visualizations Index](#visualizations-index) |
|
|
|
|
|
--- |
|
|
## 1. Tokenizer Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |
|
|
|------------|-------------|---------------|----------|--------------| |
|
|
| **8k** | 2.438x | 2.44 | 0.1566% | 682,453 | |
|
|
| **16k** | 2.748x | 2.75 | 0.1765% | 605,553 | |
|
|
| **32k** | 3.035x | 3.04 | 0.1950% | 548,316 | |
|
|
| **64k** | 3.293x ๐ | 3.29 | 0.2116% | 505,279 | |
|
|
|
|
|
### Tokenization Examples |
|
|
|
|
|
Below are sample sentences tokenized with each vocabulary size: |
|
|
|
|
|
**Sample 1:** `แแแฉ แ แฐแแแ แแ
แซแแต แจแแแ แฐแดแต แ แแญ แแแข แแ แจแฐแ แจแแแแฃ แตแแ แจแฐแ แแ แซแฌแ แแแข` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โแ แ แฉ โแ แฐ แแแ โแแ
แซแแต โแจแแแ โแฐแดแต โแ แแญ โแแแข ... (+10 more)` | 20 | |
|
|
| 16k | `โแ แแฉ โแ แฐแแแ โแแ
แซแแต โแจแแแ โแฐแดแต โแ แแญ โแแแข โแแ โแจแฐแ ... (+8 more)` | 18 | |
|
|
| 32k | `โแแแฉ โแ แฐแแแ โแแ
แซแแต โแจแแแ โแฐแดแต โแ แแญ โแแแข โแแ โแจแฐแ โแจแแแแฃ ... (+6 more)` | 16 | |
|
|
| 64k | `โแแแฉ โแ แฐแแแ โแแ
แซแแต โแจแแแ โแฐแดแต โแ แแญ โแแแข โแแ โแจแฐแ โแจแแแแฃ ... (+5 more)` | 15 | |
|
|
|
|
|
**Sample 2:** `แ แพแซ แจ277 แตแจ 240 แแญแแ . แตแจแต แจแแแต แ แแญ แแแญแซ แแแแฅแต แแแฅ แแ แญแข แ 271 แแญแแ . แแตแ แจแกแฒแตแ แฐแจแณแญ...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โแ แพ แซ โแจ 2 7 7 โแต แจ โ ... (+42 more)` | 52 | |
|
|
| 16k | `โแ แพ แซ โแจ 2 7 7 โแต แจ โ ... (+39 more)` | 49 | |
|
|
| 32k | `โแ แพ แซ โแจ 2 7 7 โแต แจ โ 2 ... (+38 more)` | 48 | |
|
|
| 64k | `โแ แพแซ โแจ 2 7 7 โแตแจ โ 2 4 0 ... (+34 more)` | 44 | |
|
|
|
|
|
**Sample 3:** `แแตแแแญแต (แฅแแแแแ: Netflix) แ แแตแแญ แแญ แแแแฝแ แฅแ แจแดแแชแฅแ แแฎแแซแแฝแ แแแแแจแต แจแแซแตแฝแ แจแฅแจแต แ แแ...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โแ แต แ แ แญแต โ( แฅแแแแแ : โn et ... (+36 more)` | 46 | |
|
|
| 16k | `โแ แตแ แ แญแต โ( แฅแแแแแ : โn et fl ... (+29 more)` | 39 | |
|
|
| 32k | `โแ แตแ แแญแต โ( แฅแแแแแ : โnet fl ix ) ... (+23 more)` | 33 | |
|
|
| 64k | `โแ แตแ แแญแต โ( แฅแแแแแ : โnet flix ) โแ แแตแแญ ... (+16 more)` | 26 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Compression:** 64k achieves 3.293x compression |
|
|
- **Lowest UNK Rate:** 8k with 0.1566% unknown tokens |
|
|
- **Trade-off:** Larger vocabularies improve compression but increase model size |
|
|
- **Recommendation:** 32k vocabulary provides optimal balance for production use |
|
|
|
|
|
--- |
|
|
## 2. N-gram Model Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |
|
|
|--------|---------|------------|---------|----------------|------------------|-------------------| |
|
|
| **2-gram** | Word | 9,101 | 13.15 | 28,185 | 19.6% | 39.5% | |
|
|
| **2-gram** | Subword | 2,069 ๐ | 11.01 | 23,787 | 34.1% | 69.3% | |
|
|
| **3-gram** | Word | 9,934 | 13.28 | 35,745 | 22.2% | 40.6% | |
|
|
| **3-gram** | Subword | 19,035 | 14.22 | 153,217 | 11.9% | 35.6% | |
|
|
| **4-gram** | Word | 36,871 | 15.17 | 91,072 | 13.9% | 25.7% | |
|
|
| **4-gram** | Subword | 94,475 | 16.53 | 551,504 | 6.6% | 19.5% | |
|
|
| **5-gram** | Word | 32,696 | 15.00 | 78,497 | 14.6% | 26.2% | |
|
|
| **5-gram** | Subword | 213,435 | 17.70 | 879,311 | 5.0% | 14.3% | |
|
|
|
|
|
### Top 5 N-grams by Size |
|
|
|
|
|
**2-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `แ แ` | 8,266 | |
|
|
| 2 | `แแณแ แแ` | 5,623 | |
|
|
| 3 | `แจแ แแญแ แแณแ` | 5,562 | |
|
|
| 4 | `แฅ แค` | 4,014 | |
|
|
| 5 | `แค แ ` | 3,948 | |
|
|
|
|
|
**3-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `แจแ แแญแ แแณแ แแ` | 5,562 | |
|
|
| 2 | `แฅ แค แ ` | 3,896 | |
|
|
| 3 | `แแณแ แแ แตแญแแ` | 3,454 | |
|
|
| 4 | `แแฐแฅ แฐแจแตแ แแณแ` | 3,051 | |
|
|
| 5 | `แแ แตแญแแ แแฐแฅ` | 2,530 | |
|
|
|
|
|
**4-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `แจแ แแญแ แแณแ แแ แตแญแแ` | 3,452 | |
|
|
| 2 | `แแณแ แแ แตแญแแ แแฐแฅ` | 2,530 | |
|
|
| 3 | `แตแญแแ แแฐแฅ แซแแฐแฐแจแแ แแณแ` | 2,115 | |
|
|
| 4 | `แแ แตแญแแ แแฐแฅ แซแแฐแฐแจแแ` | 2,111 | |
|
|
| 5 | `แแณแ แแฐแฅ แฐแจแตแ แแณแ` | 1,854 | |
|
|
|
|
|
**5-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `แจแ แแญแ แแณแ แแ แตแญแแ แแฐแฅ` | 2,529 | |
|
|
| 2 | `แแณแ แแ แตแญแแ แแฐแฅ แซแแฐแฐแจแแ` | 2,111 | |
|
|
| 3 | `แแ แตแญแแ แแฐแฅ แซแแฐแฐแจแแ แแณแ` | 2,111 | |
|
|
| 4 | `แแฐแฅ แซแแฐแฐแจแแ แแณแ แแฐแฅ แฐแจแตแ` | 1,812 | |
|
|
| 5 | `แซแแฐแฐแจแแ แแณแ แแฐแฅ แฐแจแตแ แแณแ` | 1,811 | |
|
|
|
|
|
**2-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ แจ` | 172,656 | |
|
|
| 2 | `แต _` | 146,889 | |
|
|
| 3 | `_ แ ` | 142,558 | |
|
|
| 4 | `แ _` | 134,273 | |
|
|
| 5 | `_ แ ` | 115,168 | |
|
|
|
|
|
**3-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ แฅ แ` | 32,943 | |
|
|
| 2 | `_ แ แ` | 26,886 | |
|
|
| 3 | `_ แฅ แ` | 24,633 | |
|
|
| 4 | `แ แข _` | 24,427 | |
|
|
| 5 | `แฅ แ _` | 23,097 | |
|
|
|
|
|
**4-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ แฅ แ _` | 22,966 | |
|
|
| 2 | `_ แ แ แข` | 19,603 | |
|
|
| 3 | `แ แ แข _` | 19,130 | |
|
|
| 4 | `_ แฅ แ แฐ` | 14,167 | |
|
|
| 5 | `_ แ แญ _` | 13,064 | |
|
|
|
|
|
**5-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ แ แ แข _` | 19,000 | |
|
|
| 2 | `_ แ แต แฅ _` | 9,650 | |
|
|
| 3 | `แข แต แฎ แต แซ` | 7,988 | |
|
|
| 4 | `_ แ แณ แ _` | 7,852 | |
|
|
| 5 | `_ แฅ แ แฐ _` | 6,562 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Perplexity:** 2-gram (subword) with 2,069 |
|
|
- **Entropy Trend:** Decreases with larger n-grams (more predictable) |
|
|
- **Coverage:** Top-1000 patterns cover ~14% of corpus |
|
|
- **Recommendation:** 4-gram or 5-gram for best predictive performance |
|
|
|
|
|
--- |
|
|
## 3. Markov Chain Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |
|
|
|---------|---------|-------------|------------|------------------|-----------------|----------------| |
|
|
| **1** | Word | 0.7520 | 1.684 | 4.82 | 237,556 | 24.8% | |
|
|
| **1** | Subword | 1.2212 | 2.331 | 17.49 | 2,857 | 0.0% | |
|
|
| **2** | Word | 0.1473 | 1.108 | 1.28 | 1,142,374 | 85.3% | |
|
|
| **2** | Subword | 1.0395 | 2.055 | 6.98 | 49,956 | 0.0% | |
|
|
| **3** | Word | 0.0354 | 1.025 | 1.06 | 1,462,526 | 96.5% | |
|
|
| **3** | Subword | 0.6359 | 1.554 | 3.37 | 348,652 | 36.4% | |
|
|
| **4** | Word | 0.0157 ๐ | 1.011 | 1.02 | 1,537,232 | 98.4% | |
|
|
| **4** | Subword | 0.4526 | 1.368 | 2.15 | 1,173,222 | 54.7% | |
|
|
|
|
|
### Generated Text Samples (Word-based) |
|
|
|
|
|
Below are text samples generated from each word-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `แแ แซแฝแฑแ แแ แแญแแ แจแแแ แจแแแต แฅแฝแณแญแ แฅแญแณแณ แจแแแแต แแฅแฑ แจแฐแ แ แ แตแแแ แแฝแ แญแ แแ แแฌแ แณแญแ แตแ` |
|
|
2. `แฅแ แขแฎแแแซแ แฅแ แ แแแซแจแถแฝแ แแแแแฝ แญแแณแ แจแแณแ
แฝ แจแแ แแชแซแ แแแ แแ แซแแณแแ แณแแแแ แจแจแ แจแแ แจแแแญแฐแแแ แจแแ แตแญแแ แแซแณแฅแญ` |
|
|
3. `แแญ แ แแแแแ แ แซแต แแฐแแแ แ แญแฝแแ แจแแแ แแ แ แฒแชแ แฐแแ แแจแฐแแซแฉ แ แ แแชแซ แแตแฅ แจแฐแจแแแ แญแแตแแ แจแแซแ แจแถแชแจแต` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `แ แ แ แแ แแแแต แแแณแต แแ แ แแ แแ แแญ แแแแ แญแแแแก แแฅแแแซ แแแถแฝ แญแ
แจแแ แแแแซ แแฃแญแซ` |
|
|
2. `แแณแ แแ แตแญแแ แแฐแฅ แซแแฐแฐแจแแ แแณแ แแฐแฅ แฐแจแตแ แแณแ แแฐแฅ แฐแจแตแ แแณแ แแฐแฅ แฐแจแตแ แแณแ แแแแฃแตแ แจแค` |
|
|
3. `แจแ แแญแ แแณแ แแ แตแญแแ แแตแฅแญ แ แญแฐแ แ
แญแแตแแ แตแญแแ แแฐแฅ แฐแจแตแ แแณแ แแฐแฅ แฐแจแตแ แแณแ แแฐแฅ แฐแจแตแ แแณแ` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `แจแ แแญแ แแณแ แแ แตแญแแ แแฐแฅ แซแแฐแฐแจแแ แแณแ แแฐแฅ แฐแจแตแ แแณแ แแแฃแญ แณแญแแญ แตแ แฅแแฐแแแต แแ` |
|
|
2. `แฅ แค แ แจแฅแแแแ แซแแแฐแญ แแปแปแซ แฐแจแตแ แจแแแฅแฒแฑแ แแต แแแแแฅ แจแฐแแแฐ แขแแแ แฅแแแแ แแแขแต 25 แแ แแแต แแ` |
|
|
3. `แแณแ แแ แตแญแแ แจแฐแซแซแ แแแฎแฝแ แแแแจแต แจแแซแแแแ แแแฅ แแฐแฅ แฐแจแตแ แแณแ แแณแ` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `แจแ แแญแ แแณแ แแ แตแญแแ แแฐแฅ แฐแจแตแ แแณแ แ แฌ แซแซแ แญแแแ` |
|
|
2. `แแณแ แแ แตแญแแ แแฐแฅ แซแแฐแฐแจแแ แแณแ แแฐแฅ แฐแจแตแ แแณแ แแฐแฅ แซแแฐแฐแจแแ แแณแ` |
|
|
3. `แแ แตแญแแ แแฐแฅ แซแแฐแฐแจแแ แแณแ แแฐแฅ แฐแจแตแ แแณแ แดแต แแแ แปแญ แแต` |
|
|
|
|
|
|
|
|
### Generated Text Samples (Subword-based) |
|
|
|
|
|
Below are text samples generated from each subword-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `_แ แญแแแแกแขแขแตแญ_แจแฐแ
แ` |
|
|
2. `แ_แฅแแแฎแฝแต_crcue_แ ` |
|
|
3. `แต_แ_แแญแแตแญแ_แ แต_po` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `_แจแขแตแฎแตแซ_แแ_แณแญแแต_แฐ` |
|
|
2. `แต_แแแข_แฅแแแฅแณแต_แแญแตแต` |
|
|
3. `_แ แแซ_แ
แฅแจ_แจแณแแ_แแญ_` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `_แฅแแฒแ
แกแแแญ_แแแ_แแแ_` |
|
|
2. `_แแแข_แฅแแฒแ
แแกแ
แแก_แฐแแ` |
|
|
3. `_แฅแ_แจแฐแซแ_แฅแแฒแธแจแแ แธแ` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `_แฅแ_แแณแ_แแแฅแณแต_แแฝแ_แต` |
|
|
2. `_แแแข_แจแแฅแฝ_แแแต_แญแแ_แ` |
|
|
3. `แแแข_แแแ_แจแฐแแณ_แ แแแ_แซ` |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Predictability:** Context-4 (word) with 98.4% predictability |
|
|
- **Branching Factor:** Decreases with context size (more deterministic) |
|
|
- **Memory Trade-off:** Larger contexts require more storage (1,173,222 contexts) |
|
|
- **Recommendation:** Context-3 or Context-4 for text generation |
|
|
|
|
|
--- |
|
|
## 4. Vocabulary Analysis |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Statistics |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Vocabulary Size | 100,186 | |
|
|
| Total Tokens | 1,652,256 | |
|
|
| Mean Frequency | 16.49 | |
|
|
| Median Frequency | 3 | |
|
|
| Frequency Std Dev | 176.36 | |
|
|
|
|
|
### Most Common Words |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | แแ | 26,831 | |
|
|
| 2 | แฅแ | 23,089 | |
|
|
| 3 | แแญ | 13,382 | |
|
|
| 4 | แแณแ | 11,608 | |
|
|
| 5 | แแตแฅ | 9,891 | |
|
|
| 6 | แแ แญ | 9,130 | |
|
|
| 7 | แ | 8,627 | |
|
|
| 8 | แแฐ | 8,565 | |
|
|
| 9 | แ | 8,525 | |
|
|
| 10 | แฅแแฐ | 6,906 | |
|
|
|
|
|
### Least Common Words (from vocabulary) |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | แแแซ | 2 | |
|
|
| 2 | แฒแแซแ | 2 | |
|
|
| 3 | แแตแฐแฝ | 2 | |
|
|
| 4 | แ แแณแณ | 2 | |
|
|
| 5 | แแณแแ | 2 | |
|
|
| 6 | แจแตแฅ | 2 | |
|
|
| 7 | แ แแฐแแญแฑ | 2 | |
|
|
| 8 | แแฐแฐแแ | 2 | |
|
|
| 9 | แจแแฎแแแต | 2 | |
|
|
| 10 | แแแแแจแ | 2 | |
|
|
|
|
|
### Zipf's Law Analysis |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Zipf Coefficient | 0.9364 | |
|
|
| Rยฒ (Goodness of Fit) | 0.995158 | |
|
|
| Adherence Quality | **excellent** | |
|
|
|
|
|
### Coverage Analysis |
|
|
|
|
|
| Top N Words | Coverage | |
|
|
|-------------|----------| |
|
|
| Top 100 | 22.7% | |
|
|
| Top 1,000 | 45.8% | |
|
|
| Top 5,000 | 66.2% | |
|
|
| Top 10,000 | 74.9% | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Zipf Compliance:** Rยฒ=0.9952 indicates excellent adherence to Zipf's law |
|
|
- **High Frequency Dominance:** Top 100 words cover 22.7% of corpus |
|
|
- **Long Tail:** 90,186 words needed for remaining 25.1% coverage |
|
|
|
|
|
--- |
|
|
## 5. Word Embeddings Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.1 Cross-Lingual Alignment |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.2 Model Comparison |
|
|
|
|
|
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |
|
|
|-------|-----------|----------|------------------|---------------|----------------| |
|
|
| **mono_32d** | 32 | 0.9098 | 0.3240 | N/A | N/A | |
|
|
| **mono_64d** | 64 | 0.9137 ๐ | 0.2319 | N/A | N/A | |
|
|
| **mono_128d** | 128 | 0.8452 | 0.1755 | N/A | N/A | |
|
|
| **aligned_32d** | 32 | 0.9098 | 0.3259 | 0.0200 | 0.1420 | |
|
|
| **aligned_64d** | 64 | 0.9137 | 0.2299 | 0.0480 | 0.1860 | |
|
|
| **aligned_128d** | 128 | 0.8452 | 0.1764 | 0.0840 | 0.2800 | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Isotropy:** mono_64d with 0.9137 (more uniform distribution) |
|
|
- **Semantic Density:** Average pairwise similarity of 0.2439. Lower values indicate better semantic separation. |
|
|
- **Alignment Quality:** Aligned models achieve up to 8.4% R@1 in cross-lingual retrieval. |
|
|
- **Recommendation:** 128d aligned for best cross-lingual performance |
|
|
|
|
|
--- |
|
|
## 6. Morphological Analysis (Experimental) |
|
|
|
|
|
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. |
|
|
|
|
|
### 6.1 Productivity & Complexity |
|
|
|
|
|
| Metric | Value | Interpretation | Recommendation | |
|
|
|--------|-------|----------------|----------------| |
|
|
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis | |
|
|
| Idiomaticity Gap | **0.840** | High formulaic/idiomatic content | - | |
|
|
|
|
|
### 6.2 Affix Inventory (Productive Units) |
|
|
|
|
|
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. |
|
|
|
|
|
*No productive affixes detected.* |
|
|
|
|
|
|
|
|
### 6.3 Bound Stems (Lexical Roots) |
|
|
|
|
|
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. |
|
|
|
|
|
| Stem | Cohesion | Substitutability | Examples | |
|
|
|------|----------|------------------|----------| |
|
|
| `แฅแแฐแ` | 2.30x | 158 contexts | แฅแแฐแแน, แฅแแฐแแป, แฅแแฐแแ | |
|
|
| `แญแตแฒแซ` | 2.39x | 61 contexts | แญแญแตแฒแซ, แจแญแตแฒแซแ, แญแญแตแฒแซแ | |
|
|
| `แตแฎแตแซ` | 2.17x | 57 contexts | แขแตแฎแตแซ, แฅแตแฎแตแซ, แขแตแฎแตแซแ | |
|
|
| `แแแแต` | 2.10x | 49 contexts | แแแแตแฑ, แแแแตแฐ, แแแแตแต | |
|
|
| `แแแ แฅ` | 2.58x | 23 contexts | แฅแแแ แฅแแญ, แฅแแแ แฅแแญ, แฅแแแ แฅแแญ | |
|
|
| `แขแตแฎแต` | 2.08x | 46 contexts | แขแตแฎแตแซ, แขแตแฎแตแซแ, แขแตแฎแตแซแ | |
|
|
| `แฅแแแ` | 2.00x | 52 contexts | แฅแแแแ, แฅแแแแ, แฅแแแแ | |
|
|
| `แแจแแณ` | 2.23x | 34 contexts | แแจแแณแ, แแจแแณแญ, แจแแจแแณแฉ | |
|
|
| `แแแแฅ` | 2.04x | 46 contexts | แแแแฅแฑ, แแแแฅแต, แแแแฅแฐ | |
|
|
| `tion` | 2.71x | 17 contexts | action, nation, section | |
|
|
| `แ แตแฐแณ` | 2.21x | 33 contexts | แ แตแฐแณแฐแ, แ แตแฐแณแฐแช, แ แตแฐแณแฐแ | |
|
|
| `แแแแ` | 2.54x | 19 contexts | แฅแแแแแ, แ แฅแแแแแ, แขแแแแแแ | |
|
|
|
|
|
### 6.4 Affix Compatibility (Co-occurrence) |
|
|
|
|
|
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. |
|
|
|
|
|
*No significant affix co-occurrences detected.* |
|
|
|
|
|
|
|
|
### 6.5 Recursive Morpheme Segmentation |
|
|
|
|
|
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). |
|
|
|
|
|
*Insufficient data for recursive segmentation.* |
|
|
|
|
|
|
|
|
### 6.6 Linguistic Interpretation |
|
|
|
|
|
> **Automated Insight:** |
|
|
The language Amharic shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. |
|
|
|
|
|
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. |
|
|
|
|
|
--- |
|
|
## 7. Summary & Recommendations |
|
|
|
|
|
 |
|
|
|
|
|
### Production Recommendations |
|
|
|
|
|
| Component | Recommended | Rationale | |
|
|
|-----------|-------------|-----------| |
|
|
| Tokenizer | **64k BPE** | Best compression (3.29x) | |
|
|
| N-gram | **2-gram** | Lowest perplexity (2,069) | |
|
|
| Markov | **Context-4** | Highest predictability (98.4%) | |
|
|
| Embeddings | **100d** | Balanced semantic capture and isotropy | |
|
|
|
|
|
|
|
|
--- |
|
|
## Appendix: Metrics Glossary & Interpretation Guide |
|
|
|
|
|
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. |
|
|
|
|
|
### Tokenizer Metrics |
|
|
|
|
|
**Compression Ratio** |
|
|
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. |
|
|
> |
|
|
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. |
|
|
> |
|
|
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. |
|
|
|
|
|
**Average Token Length (Fertility)** |
|
|
> *Definition:* Mean number of characters per token produced by the tokenizer. |
|
|
> |
|
|
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. |
|
|
> |
|
|
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. |
|
|
|
|
|
**Unknown Token Rate (OOV Rate)** |
|
|
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. |
|
|
> |
|
|
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. |
|
|
> |
|
|
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. |
|
|
|
|
|
### N-gram Model Metrics |
|
|
|
|
|
**Perplexity** |
|
|
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. |
|
|
> |
|
|
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. |
|
|
> |
|
|
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. |
|
|
|
|
|
**Entropy** |
|
|
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. |
|
|
> |
|
|
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. |
|
|
> |
|
|
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. |
|
|
|
|
|
**Coverage (Top-K)** |
|
|
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. |
|
|
> |
|
|
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. |
|
|
> |
|
|
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. |
|
|
|
|
|
### Markov Chain Metrics |
|
|
|
|
|
**Average Entropy** |
|
|
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. |
|
|
> |
|
|
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). |
|
|
> |
|
|
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. |
|
|
|
|
|
**Branching Factor** |
|
|
> *Definition:* Average number of unique next tokens observed for each context. |
|
|
> |
|
|
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). |
|
|
> |
|
|
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. |
|
|
|
|
|
**Predictability** |
|
|
> *Definition:* Derived metric: (1 - normalized_entropy) ร 100%. Indicates how deterministic the model's predictions are. |
|
|
> |
|
|
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. |
|
|
> |
|
|
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. |
|
|
|
|
|
### Vocabulary & Zipf's Law Metrics |
|
|
|
|
|
**Zipf's Coefficient** |
|
|
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. |
|
|
> |
|
|
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. |
|
|
> |
|
|
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. |
|
|
|
|
|
**Rยฒ (Coefficient of Determination)** |
|
|
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. |
|
|
> |
|
|
> *Intuition:* Rยฒ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. |
|
|
> |
|
|
> *What to seek:* Rยฒ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. |
|
|
|
|
|
**Vocabulary Coverage** |
|
|
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. |
|
|
> |
|
|
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. |
|
|
> |
|
|
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. |
|
|
|
|
|
### Word Embedding Metrics |
|
|
|
|
|
**Isotropy** |
|
|
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. |
|
|
> |
|
|
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. |
|
|
> |
|
|
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. |
|
|
|
|
|
**Average Norm** |
|
|
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. |
|
|
> |
|
|
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. |
|
|
> |
|
|
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). |
|
|
|
|
|
**Cosine Similarity** |
|
|
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). |
|
|
> |
|
|
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. |
|
|
> |
|
|
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. |
|
|
|
|
|
**t-SNE Visualization** |
|
|
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. |
|
|
> |
|
|
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. |
|
|
> |
|
|
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. |
|
|
|
|
|
### General Interpretation Guidelines |
|
|
|
|
|
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). |
|
|
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). |
|
|
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. |
|
|
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. |
|
|
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. |
|
|
|
|
|
|
|
|
### Visualizations Index |
|
|
|
|
|
| Visualization | Description | |
|
|
|---------------|-------------| |
|
|
| Tokenizer Compression | Compression ratios by vocabulary size | |
|
|
| Tokenizer Fertility | Average token length by vocabulary | |
|
|
| Tokenizer OOV | Unknown token rates | |
|
|
| Tokenizer Total Tokens | Total tokens by vocabulary | |
|
|
| N-gram Perplexity | Perplexity by n-gram size | |
|
|
| N-gram Entropy | Entropy by n-gram size | |
|
|
| N-gram Coverage | Top pattern coverage | |
|
|
| N-gram Unique | Unique n-gram counts | |
|
|
| Markov Entropy | Entropy by context size | |
|
|
| Markov Branching | Branching factor by context | |
|
|
| Markov Contexts | Unique context counts | |
|
|
| Zipf's Law | Frequency-rank distribution with fit | |
|
|
| Vocab Frequency | Word frequency distribution | |
|
|
| Top 20 Words | Most frequent words | |
|
|
| Vocab Coverage | Cumulative coverage curve | |
|
|
| Embedding Isotropy | Vector space uniformity | |
|
|
| Embedding Norms | Vector magnitude distribution | |
|
|
| Embedding Similarity | Word similarity heatmap | |
|
|
| Nearest Neighbors | Similar words for key terms | |
|
|
| t-SNE Words | 2D word embedding visualization | |
|
|
| t-SNE Sentences | 2D sentence embedding visualization | |
|
|
| Position Encoding | Encoding method comparison | |
|
|
| Model Sizes | Storage requirements | |
|
|
| Performance Dashboard | Comprehensive performance overview | |
|
|
|
|
|
--- |
|
|
## About This Project |
|
|
|
|
|
### Data Source |
|
|
|
|
|
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. |
|
|
|
|
|
### Project |
|
|
|
|
|
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. |
|
|
|
|
|
### Maintainer |
|
|
|
|
|
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) |
|
|
|
|
|
### Citation |
|
|
|
|
|
If you use these models in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{wikilangs2025, |
|
|
author = {Kamali, Omar}, |
|
|
title = {Wikilangs: Open NLP Models for Wikipedia Languages}, |
|
|
year = {2025}, |
|
|
doi = {10.5281/zenodo.18073153}, |
|
|
publisher = {Zenodo}, |
|
|
url = {https://huggingface.co/wikilangs} |
|
|
institution = {Omneity Labs} |
|
|
} |
|
|
``` |
|
|
|
|
|
### License |
|
|
|
|
|
MIT License - Free for academic and commercial use. |
|
|
|
|
|
### Links |
|
|
|
|
|
- ๐ Website: [wikilangs.org](https://wikilangs.org) |
|
|
- ๐ค Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) |
|
|
- ๐ Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) |
|
|
- ๐ค Author: [Omar Kamali](https://huggingface.co/omarkamali) |
|
|
- ๐ค Sponsor: [Featherless AI](https://featherless.ai) |
|
|
--- |
|
|
*Generated by Wikilangs Models Pipeline* |
|
|
|
|
|
*Report Date: 2026-01-03 16:28:42* |
|
|
|