|
|
--- |
|
|
language: bar |
|
|
language_name: Bavarian |
|
|
language_family: germanic_west_continental |
|
|
tags: |
|
|
- wikilangs |
|
|
- nlp |
|
|
- tokenizer |
|
|
- embeddings |
|
|
- n-gram |
|
|
- markov |
|
|
- wikipedia |
|
|
- feature-extraction |
|
|
- sentence-similarity |
|
|
- tokenization |
|
|
- n-grams |
|
|
- markov-chain |
|
|
- text-mining |
|
|
- fasttext |
|
|
- babelvec |
|
|
- vocabulous |
|
|
- vocabulary |
|
|
- monolingual |
|
|
- family-germanic_west_continental |
|
|
license: mit |
|
|
library_name: wikilangs |
|
|
pipeline_tag: text-generation |
|
|
datasets: |
|
|
- omarkamali/wikipedia-monthly |
|
|
dataset_info: |
|
|
name: wikipedia-monthly |
|
|
description: Monthly snapshots of Wikipedia articles across 300+ languages |
|
|
metrics: |
|
|
- name: best_compression_ratio |
|
|
type: compression |
|
|
value: 4.003 |
|
|
- name: best_isotropy |
|
|
type: isotropy |
|
|
value: 0.8432 |
|
|
- name: vocabulary_size |
|
|
type: vocab |
|
|
value: 0 |
|
|
generated: 2026-01-03 |
|
|
--- |
|
|
|
|
|
# Bavarian - Wikilangs Models |
|
|
## Comprehensive Research Report & Full Ablation Study |
|
|
|
|
|
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Bavarian** Wikipedia data. |
|
|
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. |
|
|
|
|
|
## π Repository Contents |
|
|
|
|
|
### Models & Assets |
|
|
|
|
|
- Tokenizers (8k, 16k, 32k, 64k) |
|
|
- N-gram models (2, 3, 4, 5-gram) |
|
|
- Markov chains (context of 1, 2, 3, 4 and 5) |
|
|
- Subword N-gram and Markov chains |
|
|
- Embeddings in various sizes and dimensions (aligned and unaligned) |
|
|
- Language Vocabulary |
|
|
- Language Statistics |
|
|
|
|
|
 |
|
|
|
|
|
### Analysis and Evaluation |
|
|
|
|
|
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation) |
|
|
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) |
|
|
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation) |
|
|
- [4. Vocabulary Analysis](#4-vocabulary-analysis) |
|
|
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) |
|
|
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) |
|
|
- [7. Summary & Recommendations](#7-summary--recommendations) |
|
|
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) |
|
|
- [Visualizations Index](#visualizations-index) |
|
|
|
|
|
--- |
|
|
## 1. Tokenizer Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |
|
|
|------------|-------------|---------------|----------|--------------| |
|
|
| **8k** | 3.167x | 3.17 | 0.0430% | 1,042,115 | |
|
|
| **16k** | 3.477x | 3.48 | 0.0472% | 949,394 | |
|
|
| **32k** | 3.753x | 3.75 | 0.0509% | 879,530 | |
|
|
| **64k** | 4.003x π | 4.00 | 0.0543% | 824,531 | |
|
|
|
|
|
### Tokenization Examples |
|
|
|
|
|
Below are sample sentences tokenized with each vocabulary size: |
|
|
|
|
|
**Sample 1:** `Forstern is a Gmoa im obaboarischn Landkroas Arrdeng. Im Netz Gemeinde Forstern ...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `βforst ern βis βa βgmoa βim βoba boarischn βlandkroas βar ... (+19 more)` | 29 | |
|
|
| 16k | `βforst ern βis βa βgmoa βim βobaboarischn βlandkroas βarrdeng . ... (+15 more)` | 25 | |
|
|
| 32k | `βforst ern βis βa βgmoa βim βobaboarischn βlandkroas βarrdeng . ... (+13 more)` | 23 | |
|
|
| 64k | `βforst ern βis βa βgmoa βim βobaboarischn βlandkroas βarrdeng . ... (+12 more)` | 22 | |
|
|
|
|
|
**Sample 2:** `Marlboro County. Obgruafa am 22. Feba is a County in South Carolina in da USA. B...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `βmar l boro βcounty . βobgruafa βam β 2 2 ... (+18 more)` | 28 | |
|
|
| 16k | `βmar l boro βcounty . βobgruafa βam β 2 2 ... (+18 more)` | 28 | |
|
|
| 32k | `βmarl boro βcounty . βobgruafa βam β 2 2 . ... (+17 more)` | 27 | |
|
|
| 64k | `βmarlboro βcounty . βobgruafa βam β 2 2 . βfeba ... (+16 more)` | 26 | |
|
|
|
|
|
**Sample 3:** `Hill County is a County in Montana in da USA. Beleg Im Netz in Montana` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `βhill βcounty βis βa βcounty βin βmontana βin βda βusa ... (+6 more)` | 16 | |
|
|
| 16k | `βhill βcounty βis βa βcounty βin βmontana βin βda βusa ... (+6 more)` | 16 | |
|
|
| 32k | `βhill βcounty βis βa βcounty βin βmontana βin βda βusa ... (+6 more)` | 16 | |
|
|
| 64k | `βhill βcounty βis βa βcounty βin βmontana βin βda βusa ... (+6 more)` | 16 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Compression:** 64k achieves 4.003x compression |
|
|
- **Lowest UNK Rate:** 8k with 0.0430% unknown tokens |
|
|
- **Trade-off:** Larger vocabularies improve compression but increase model size |
|
|
- **Recommendation:** 32k vocabulary provides optimal balance for production use |
|
|
|
|
|
--- |
|
|
## 2. N-gram Model Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |
|
|
|--------|---------|------------|---------|----------------|------------------|-------------------| |
|
|
| **2-gram** | Word | 27,199 | 14.73 | 109,780 | 13.0% | 31.5% | |
|
|
| **2-gram** | Subword | 361 π | 8.50 | 7,796 | 60.7% | 98.3% | |
|
|
| **3-gram** | Word | 40,782 | 15.32 | 128,747 | 12.7% | 26.6% | |
|
|
| **3-gram** | Subword | 3,796 | 11.89 | 62,893 | 20.6% | 60.9% | |
|
|
| **4-gram** | Word | 56,976 | 15.80 | 186,218 | 13.7% | 25.1% | |
|
|
| **4-gram** | Subword | 27,410 | 14.74 | 362,482 | 9.1% | 28.4% | |
|
|
| **5-gram** | Word | 38,882 | 15.25 | 130,277 | 15.7% | 28.0% | |
|
|
| **5-gram** | Subword | 124,788 | 16.93 | 1,153,187 | 4.9% | 16.5% | |
|
|
|
|
|
### Top 5 N-grams by Size |
|
|
|
|
|
**2-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `vo da` | 26,508 | |
|
|
| 2 | `is a` | 22,819 | |
|
|
| 3 | `in da` | 22,392 | |
|
|
| 4 | `im netz` | 14,484 | |
|
|
| 5 | `vo de` | 13,424 | |
|
|
|
|
|
**3-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `beleg im netz` | 3,530 | |
|
|
| 2 | `in da usa` | 3,478 | |
|
|
| 3 | `da beziak hod` | 2,393 | |
|
|
| 4 | `im netz in` | 2,005 | |
|
|
| 5 | `sitz vo da` | 1,888 | |
|
|
|
|
|
**4-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `beleg im netz in` | 1,575 | |
|
|
| 2 | `da sitz vo da` | 1,482 | |
|
|
| 3 | `is a county in` | 1,429 | |
|
|
| 4 | `in da usa da` | 1,407 | |
|
|
| 5 | `a katastralgmoa in da` | 1,387 | |
|
|
|
|
|
**5-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `flΓ€chn ausgwiesn gwesn ende woarn` | 1,385 | |
|
|
| 2 | `hektar ois laundwiatschoftliche flΓ€chn gnutzt` | 1,385 | |
|
|
| 3 | `forstwirtschaftli gnutzte flΓ€chn ausgwiesn gwesn` | 1,385 | |
|
|
| 4 | `hektar sand ois forstwirtschaftli gnutzte` | 1,385 | |
|
|
| 5 | `ois laundwiatschoftliche flΓ€chn gnutzt und` | 1,385 | |
|
|
|
|
|
**2-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `n _` | 701,951 | |
|
|
| 2 | `a _` | 667,528 | |
|
|
| 3 | `c h` | 636,525 | |
|
|
| 4 | `_ d` | 557,323 | |
|
|
| 5 | `e _` | 479,658 | |
|
|
|
|
|
**3-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `s c h` | 303,728 | |
|
|
| 2 | `_ d e` | 253,515 | |
|
|
| 3 | `_ d a` | 172,902 | |
|
|
| 4 | `n d _` | 169,557 | |
|
|
| 5 | `u n d` | 168,298 | |
|
|
|
|
|
**4-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ d a _` | 132,086 | |
|
|
| 2 | `_ d e _` | 130,374 | |
|
|
| 3 | `u n d _` | 127,939 | |
|
|
| 4 | `_ u n d` | 119,950 | |
|
|
| 5 | `i s c h` | 99,379 | |
|
|
|
|
|
**5-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ u n d _` | 118,720 | |
|
|
| 2 | `_ v o _ d` | 44,559 | |
|
|
| 3 | `_ i n _ d` | 37,539 | |
|
|
| 4 | `i s c h e` | 33,643 | |
|
|
| 5 | `_ d e s _` | 31,011 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Perplexity:** 2-gram (subword) with 361 |
|
|
- **Entropy Trend:** Decreases with larger n-grams (more predictable) |
|
|
- **Coverage:** Top-1000 patterns cover ~17% of corpus |
|
|
- **Recommendation:** 4-gram or 5-gram for best predictive performance |
|
|
|
|
|
--- |
|
|
## 3. Markov Chain Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |
|
|
|---------|---------|-------------|------------|------------------|-----------------|----------------| |
|
|
| **1** | Word | 0.7076 | 1.633 | 5.17 | 567,851 | 29.2% | |
|
|
| **1** | Subword | 0.9427 | 1.922 | 6.61 | 3,387 | 5.7% | |
|
|
| **2** | Word | 0.2111 | 1.158 | 1.52 | 2,930,161 | 78.9% | |
|
|
| **2** | Subword | 0.9146 | 1.885 | 5.83 | 22,370 | 8.5% | |
|
|
| **3** | Word | 0.0663 | 1.047 | 1.11 | 4,443,260 | 93.4% | |
|
|
| **3** | Subword | 0.8673 | 1.824 | 4.66 | 130,496 | 13.3% | |
|
|
| **4** | Word | 0.0224 π | 1.016 | 1.04 | 4,937,652 | 97.8% | |
|
|
| **4** | Subword | 0.7772 | 1.714 | 3.53 | 608,299 | 22.3% | |
|
|
|
|
|
### Generated Text Samples (Word-based) |
|
|
|
|
|
Below are text samples generated from each word-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `de gepidn und bbΓΆ 178 bukit tinggi 72 canon triplex a 7 hz ws touro college` |
|
|
2. `da effentlichn stroΓn am 9 verletzter blick af de gebietskeapaschoftn in bayern gwen dem meearesspia...` |
|
|
3. `und alfonso cuarΓ³n timothy j nΓΆ ΓΆbb infra ΓΆbb pv tullnerfelder bahn rengschbuach grΓΌnthal geografie ...` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `vo da blaa oim aussa und entschdengan seine wichdigstn litararischn weak da voda vo da gmoa kirchham` |
|
|
2. `is a kuaza a1 kuaza mit klima b launga und zwoa enklkinda da hoeneΓ uli z bad` |
|
|
3. `in da katastralgmoa dobranberg zsammgrechnt 84 bauflΓ€chn mit 44 633 m und 58 gΓ€rten auf 135 526` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `in da usa beleg im netz in virginia` |
|
|
2. `beleg im netz in missouri` |
|
|
3. `da beziak hod 39 451 eihwohna da sitz vo da vawoitung is leoti da beziak hod 12 786` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `beleg im netz in nebraska` |
|
|
2. `da sitz vo da kroasvawoitung vo oanign landkroas liegt auΓahoib vom landkroas oft in da namasgleichn...` |
|
|
3. `is a county in wisconsin in da usa beleg im netz in der emilia romagna des europapreises` |
|
|
|
|
|
|
|
|
### Generated Text Samples (Subword-based) |
|
|
|
|
|
Below are text samples generated from each subword-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `_w.adaiwenieurio` |
|
|
2. `a_lidovicrΓΆniser` |
|
|
3. `e_hmbrkum_runΓs_` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `n_fc_rein_wieforo` |
|
|
2. `a_da_oschofferkea` |
|
|
3. `chr_koi'seybunds_` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `schburyan_no_san_d` |
|
|
2. `_dem_scusdecentisc` |
|
|
3. `_daument_in_und_zu` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `_da_letztn_de_ameri` |
|
|
2. `_de_marekd_om_auf_1` |
|
|
3. `und_botta_200+_maΓ_` |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Predictability:** Context-4 (word) with 97.8% predictability |
|
|
- **Branching Factor:** Decreases with context size (more deterministic) |
|
|
- **Memory Trade-off:** Larger contexts require more storage (608,299 contexts) |
|
|
- **Recommendation:** Context-3 or Context-4 for text generation |
|
|
|
|
|
--- |
|
|
## 4. Vocabulary Analysis |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Statistics |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Vocabulary Size | 212,365 | |
|
|
| Total Tokens | 5,339,853 | |
|
|
| Mean Frequency | 25.14 | |
|
|
| Median Frequency | 3 | |
|
|
| Frequency Std Dev | 712.67 | |
|
|
|
|
|
### Most Common Words |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | de | 136,913 | |
|
|
| 2 | da | 136,168 | |
|
|
| 3 | und | 119,185 | |
|
|
| 4 | in | 101,699 | |
|
|
| 5 | a | 92,218 | |
|
|
| 6 | vo | 91,584 | |
|
|
| 7 | is | 86,664 | |
|
|
| 8 | im | 70,677 | |
|
|
| 9 | des | 33,854 | |
|
|
| 10 | hod | 30,719 | |
|
|
|
|
|
### Least Common Words (from vocabulary) |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | mechanisches | 2 | |
|
|
| 2 | stabilisierungssystem | 2 | |
|
|
| 3 | voeffentlecht | 2 | |
|
|
| 4 | innpuls | 2 | |
|
|
| 5 | buagstej | 2 | |
|
|
| 6 | nuwenburg | 2 | |
|
|
| 7 | kulturweges | 2 | |
|
|
| 8 | spessartprojektes | 2 | |
|
|
| 9 | terrassnfermig | 2 | |
|
|
| 10 | tuamhigi | 2 | |
|
|
|
|
|
### Zipf's Law Analysis |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Zipf Coefficient | 0.9730 | |
|
|
| RΒ² (Goodness of Fit) | 0.999444 | |
|
|
| Adherence Quality | **excellent** | |
|
|
|
|
|
### Coverage Analysis |
|
|
|
|
|
| Top N Words | Coverage | |
|
|
|-------------|----------| |
|
|
| Top 100 | 34.1% | |
|
|
| Top 1,000 | 55.0% | |
|
|
| Top 5,000 | 70.0% | |
|
|
| Top 10,000 | 76.7% | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Zipf Compliance:** RΒ²=0.9994 indicates excellent adherence to Zipf's law |
|
|
- **High Frequency Dominance:** Top 100 words cover 34.1% of corpus |
|
|
- **Long Tail:** 202,365 words needed for remaining 23.3% coverage |
|
|
|
|
|
--- |
|
|
## 5. Word Embeddings Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.1 Cross-Lingual Alignment |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.2 Model Comparison |
|
|
|
|
|
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |
|
|
|-------|-----------|----------|------------------|---------------|----------------| |
|
|
| **mono_32d** | 32 | 0.8296 | 0.3402 | N/A | N/A | |
|
|
| **mono_64d** | 64 | 0.8410 | 0.2581 | N/A | N/A | |
|
|
| **mono_128d** | 128 | 0.8432 π | 0.1737 | N/A | N/A | |
|
|
| **aligned_32d** | 32 | 0.8296 | 0.3341 | 0.0920 | 0.3960 | |
|
|
| **aligned_64d** | 64 | 0.8410 | 0.2543 | 0.1940 | 0.6020 | |
|
|
| **aligned_128d** | 128 | 0.8432 | 0.1862 | 0.2860 | 0.6780 | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Isotropy:** mono_128d with 0.8432 (more uniform distribution) |
|
|
- **Semantic Density:** Average pairwise similarity of 0.2578. Lower values indicate better semantic separation. |
|
|
- **Alignment Quality:** Aligned models achieve up to 28.6% R@1 in cross-lingual retrieval. |
|
|
- **Recommendation:** 128d aligned for best cross-lingual performance |
|
|
|
|
|
--- |
|
|
## 6. Morphological Analysis (Experimental) |
|
|
|
|
|
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. |
|
|
|
|
|
### 6.1 Productivity & Complexity |
|
|
|
|
|
| Metric | Value | Interpretation | Recommendation | |
|
|
|--------|-------|----------------|----------------| |
|
|
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis | |
|
|
| Idiomaticity Gap | **0.694** | High formulaic/idiomatic content | - | |
|
|
|
|
|
### 6.2 Affix Inventory (Productive Units) |
|
|
|
|
|
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. |
|
|
|
|
|
#### Productive Prefixes |
|
|
| Prefix | Examples | |
|
|
|--------|----------| |
|
|
| `-sc` | scharmbeck, schitznvaein, schiaf | |
|
|
| `-sch` | scharmbeck, schitznvaein, schiaf | |
|
|
|
|
|
#### Productive Suffixes |
|
|
| Suffix | Examples | |
|
|
|--------|----------| |
|
|
| `-n` | Εabran, unterwestern, weidesdn | |
|
|
| `-en` | metallen, theologen, mΓΌnzen | |
|
|
| `-ng` | wondering, pisang, umwondlung | |
|
|
| `-er` | grΓ€berfelder, eichenauer, weydenhammer | |
|
|
| `-ch` | hoierschbouch, weiΓabgleich, obergreutschach | |
|
|
| `-ung` | umwondlung, auflΓΆsung, ausbroadung | |
|
|
|
|
|
### 6.3 Bound Stems (Lexical Roots) |
|
|
|
|
|
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. |
|
|
|
|
|
| Stem | Cohesion | Substitutability | Examples | |
|
|
|------|----------|------------------|----------| |
|
|
| `ster` | 2.00x | 209 contexts | aster, ester, stern | |
|
|
| `schl` | 1.77x | 287 contexts | eschl, ischl, schlau | |
|
|
| `schr` | 1.99x | 137 contexts | schrit, schrim, schreg | |
|
|
| `gsch` | 1.77x | 181 contexts | gschai, gschdΓΆ, gschmo | |
|
|
| `uach` | 1.99x | 99 contexts | buach, huach, suach | |
|
|
| `itsc` | 2.19x | 64 contexts | gitsch, nitsch, kitsch | |
|
|
| `icht` | 1.54x | 345 contexts | eicht, wicht, richt | |
|
|
| `atio` | 2.26x | 45 contexts | ratio, natio, nation | |
|
|
| `nisc` | 1.77x | 126 contexts | nisch, nischn, nischt | |
|
|
| `reic` | 1.78x | 97 contexts | reich, reichd, reichl | |
|
|
| `chof` | 2.07x | 50 contexts | schof, schoft, schofn | |
|
|
| `tion` | 1.73x | 93 contexts | tione, aktion, notion | |
|
|
|
|
|
### 6.4 Affix Compatibility (Co-occurrence) |
|
|
|
|
|
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. |
|
|
|
|
|
| Prefix | Suffix | Frequency | Examples | |
|
|
|--------|--------|-----------|----------| |
|
|
| `-sc` | `-n` | 52 words | schbondan, schbΓΌΓΌn | |
|
|
| `-sc` | `-er` | 16 words | schatzgrΓ€ber, schweinsteiger | |
|
|
| `-sc` | `-en` | 13 words | schlampen, screven | |
|
|
| `-sc` | `-ng` | 11 words | schΓ€dlbedeckung, schraubvabindung | |
|
|
| `-sc` | `-ch` | 10 words | scharlach, schbruch | |
|
|
| `-sc` | `-ung` | 4 words | schΓ€dlbedeckung, schraubvabindung | |
|
|
|
|
|
### 6.5 Recursive Morpheme Segmentation |
|
|
|
|
|
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). |
|
|
|
|
|
| Word | Suggested Split | Confidence | Stem | |
|
|
|------|-----------------|------------|------| |
|
|
| schnitzen | **`sch-nitz-en`** | 6.0 | `nitz` | |
|
|
| enthaltenen | **`enthalt-en-en`** | 6.0 | `enthalt` | |
|
|
| schwensen | **`sch-wens-en`** | 6.0 | `wens` | |
|
|
| herrnhausen | **`herrnhaus-en`** | 4.5 | `herrnhaus` | |
|
|
| schrottenberg | **`sch-rottenberg`** | 4.5 | `rottenberg` | |
|
|
| heaschafamΓΌlien | **`heaschafamΓΌli-en`** | 4.5 | `heaschafamΓΌli` | |
|
|
| fawoitung | **`fawoit-ung`** | 4.5 | `fawoit` | |
|
|
| regulΓ€ren | **`regulΓ€r-en`** | 4.5 | `regulΓ€r` | |
|
|
| leitmeritzer | **`leitmeritz-er`** | 4.5 | `leitmeritz` | |
|
|
| jungfrauen | **`jungfrau-en`** | 4.5 | `jungfrau` | |
|
|
| gespenster | **`gespenst-er`** | 4.5 | `gespenst` | |
|
|
| dynastien | **`dynasti-en`** | 4.5 | `dynasti` | |
|
|
| referenten | **`referent-en`** | 4.5 | `referent` | |
|
|
| birkenhainer | **`birkenhain-er`** | 4.5 | `birkenhain` | |
|
|
| rettersheimer | **`rettersheim-er`** | 4.5 | `rettersheim` | |
|
|
|
|
|
### 6.6 Linguistic Interpretation |
|
|
|
|
|
> **Automated Insight:** |
|
|
The language Bavarian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. |
|
|
|
|
|
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. |
|
|
|
|
|
--- |
|
|
## 7. Summary & Recommendations |
|
|
|
|
|
 |
|
|
|
|
|
### Production Recommendations |
|
|
|
|
|
| Component | Recommended | Rationale | |
|
|
|-----------|-------------|-----------| |
|
|
| Tokenizer | **64k BPE** | Best compression (4.00x) | |
|
|
| N-gram | **2-gram** | Lowest perplexity (361) | |
|
|
| Markov | **Context-4** | Highest predictability (97.8%) | |
|
|
| Embeddings | **100d** | Balanced semantic capture and isotropy | |
|
|
|
|
|
|
|
|
--- |
|
|
## Appendix: Metrics Glossary & Interpretation Guide |
|
|
|
|
|
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. |
|
|
|
|
|
### Tokenizer Metrics |
|
|
|
|
|
**Compression Ratio** |
|
|
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. |
|
|
> |
|
|
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. |
|
|
> |
|
|
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. |
|
|
|
|
|
**Average Token Length (Fertility)** |
|
|
> *Definition:* Mean number of characters per token produced by the tokenizer. |
|
|
> |
|
|
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. |
|
|
> |
|
|
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. |
|
|
|
|
|
**Unknown Token Rate (OOV Rate)** |
|
|
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. |
|
|
> |
|
|
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. |
|
|
> |
|
|
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. |
|
|
|
|
|
### N-gram Model Metrics |
|
|
|
|
|
**Perplexity** |
|
|
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. |
|
|
> |
|
|
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. |
|
|
> |
|
|
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. |
|
|
|
|
|
**Entropy** |
|
|
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. |
|
|
> |
|
|
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. |
|
|
> |
|
|
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. |
|
|
|
|
|
**Coverage (Top-K)** |
|
|
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. |
|
|
> |
|
|
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. |
|
|
> |
|
|
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. |
|
|
|
|
|
### Markov Chain Metrics |
|
|
|
|
|
**Average Entropy** |
|
|
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. |
|
|
> |
|
|
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). |
|
|
> |
|
|
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. |
|
|
|
|
|
**Branching Factor** |
|
|
> *Definition:* Average number of unique next tokens observed for each context. |
|
|
> |
|
|
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). |
|
|
> |
|
|
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. |
|
|
|
|
|
**Predictability** |
|
|
> *Definition:* Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are. |
|
|
> |
|
|
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. |
|
|
> |
|
|
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. |
|
|
|
|
|
### Vocabulary & Zipf's Law Metrics |
|
|
|
|
|
**Zipf's Coefficient** |
|
|
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. |
|
|
> |
|
|
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. |
|
|
> |
|
|
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. |
|
|
|
|
|
**RΒ² (Coefficient of Determination)** |
|
|
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. |
|
|
> |
|
|
> *Intuition:* RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. |
|
|
> |
|
|
> *What to seek:* RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. |
|
|
|
|
|
**Vocabulary Coverage** |
|
|
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. |
|
|
> |
|
|
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. |
|
|
> |
|
|
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. |
|
|
|
|
|
### Word Embedding Metrics |
|
|
|
|
|
**Isotropy** |
|
|
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. |
|
|
> |
|
|
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. |
|
|
> |
|
|
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. |
|
|
|
|
|
**Average Norm** |
|
|
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. |
|
|
> |
|
|
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. |
|
|
> |
|
|
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). |
|
|
|
|
|
**Cosine Similarity** |
|
|
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). |
|
|
> |
|
|
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. |
|
|
> |
|
|
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. |
|
|
|
|
|
**t-SNE Visualization** |
|
|
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. |
|
|
> |
|
|
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. |
|
|
> |
|
|
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. |
|
|
|
|
|
### General Interpretation Guidelines |
|
|
|
|
|
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). |
|
|
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). |
|
|
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. |
|
|
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. |
|
|
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. |
|
|
|
|
|
|
|
|
### Visualizations Index |
|
|
|
|
|
| Visualization | Description | |
|
|
|---------------|-------------| |
|
|
| Tokenizer Compression | Compression ratios by vocabulary size | |
|
|
| Tokenizer Fertility | Average token length by vocabulary | |
|
|
| Tokenizer OOV | Unknown token rates | |
|
|
| Tokenizer Total Tokens | Total tokens by vocabulary | |
|
|
| N-gram Perplexity | Perplexity by n-gram size | |
|
|
| N-gram Entropy | Entropy by n-gram size | |
|
|
| N-gram Coverage | Top pattern coverage | |
|
|
| N-gram Unique | Unique n-gram counts | |
|
|
| Markov Entropy | Entropy by context size | |
|
|
| Markov Branching | Branching factor by context | |
|
|
| Markov Contexts | Unique context counts | |
|
|
| Zipf's Law | Frequency-rank distribution with fit | |
|
|
| Vocab Frequency | Word frequency distribution | |
|
|
| Top 20 Words | Most frequent words | |
|
|
| Vocab Coverage | Cumulative coverage curve | |
|
|
| Embedding Isotropy | Vector space uniformity | |
|
|
| Embedding Norms | Vector magnitude distribution | |
|
|
| Embedding Similarity | Word similarity heatmap | |
|
|
| Nearest Neighbors | Similar words for key terms | |
|
|
| t-SNE Words | 2D word embedding visualization | |
|
|
| t-SNE Sentences | 2D sentence embedding visualization | |
|
|
| Position Encoding | Encoding method comparison | |
|
|
| Model Sizes | Storage requirements | |
|
|
| Performance Dashboard | Comprehensive performance overview | |
|
|
|
|
|
--- |
|
|
## About This Project |
|
|
|
|
|
### Data Source |
|
|
|
|
|
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. |
|
|
|
|
|
### Project |
|
|
|
|
|
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. |
|
|
|
|
|
### Maintainer |
|
|
|
|
|
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) |
|
|
|
|
|
### Citation |
|
|
|
|
|
If you use these models in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{wikilangs2025, |
|
|
author = {Kamali, Omar}, |
|
|
title = {Wikilangs: Open NLP Models for Wikipedia Languages}, |
|
|
year = {2025}, |
|
|
doi = {10.5281/zenodo.18073153}, |
|
|
publisher = {Zenodo}, |
|
|
url = {https://huggingface.co/wikilangs} |
|
|
institution = {Omneity Labs} |
|
|
} |
|
|
``` |
|
|
|
|
|
### License |
|
|
|
|
|
MIT License - Free for academic and commercial use. |
|
|
|
|
|
### Links |
|
|
|
|
|
- π Website: [wikilangs.org](https://wikilangs.org) |
|
|
- π€ Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) |
|
|
- π Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) |
|
|
- π€ Author: [Omar Kamali](https://huggingface.co/omarkamali) |
|
|
- π€ Sponsor: [Featherless AI](https://featherless.ai) |
|
|
--- |
|
|
*Generated by Wikilangs Models Pipeline* |
|
|
|
|
|
*Report Date: 2026-01-03 19:01:37* |
|
|
|