dataset_info:
features:
- name: question
dtype: string
- name: options
sequence: string
- name: rationale
dtype: string
- name: label
dtype: string
- name: label_idx
dtype: int64
- name: dataset
dtype: string
splits:
- name: train
num_bytes: 203046319
num_examples: 200000
- name: validation
num_bytes: 264310
num_examples: 519
download_size: 122985245
dataset_size: 203310629
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
license: apache-2.0
task_categories:
- multiple-choice
language:
- en
size_categories:
- 100K<n<1M
MNLP M2 MCQA Dataset
A unified multiple-choice question answering (MCQA) benchmark on STEM subjects combining samples from OpenBookQA, SciQ, MMLU-auxiliary, AQUA-Rat, and MedMCQA.
Dataset Summary
This dataset merges five existing science and knowledge-based MCQA datasets into one standardized format:
| Source | Train samples |
|---|---|
| OpenBookQA | 4 900 |
| SciQ | 10 000 |
| MMLU-aux | 85 100 |
| AQUA-Rat | 50 000 |
| MedMCQA | 50 000 |
| Total | 200 000 |
Supported Tasks and Leaderboards
- Task: Multiple-Choice Question Answering (
multiple-choice-question-answering) - Metrics: Accuracy
Languages
- English
Dataset Structure
Each example has the following fields:
| Name | Type | Description |
|---|---|---|
question |
string |
The question stem. |
options |
list[string] |
List of 4-5 answer choices. |
label |
string |
The correct answer letter, e.g. "A", or "a". |
label_idx |
int |
Zero-based index of the correct answer (0–4). |
rationale |
string |
(Optional) Supporting fact or rationale text. |
dataset |
string |
Source dataset name (openbookqa, sciq, etc.) |
Splits
DatasetDict({
train: Dataset(num_rows=200000),
validation: Dataset(num_rows=519),
})
Dataset Creation
- Source Datasets
- OpenBookQA (
allenai/openbookqa) - SciQ (
allenai/sciq) - MMLU-auxiliary (
cais/mmlu, config=all) - AQUA-Rat (
deepmind/aqua_rat) - MedMCQA (
openlifescienceai/medmcqa)
Sampling We sample each training split down to a fixed size (4 900–85 100 examples). Validation examples are sampled per source by first computing each dataset’s original validation-to-train ratio (len(validation)/len(train)), taking the minimum of these ratios and 5 %, and then holding out that fraction from each source.
Unification All examples are mapped to a common schema (
question,options,label, …) with minimal preprocessing.Push to Hub
from datasets import DatasetDict, load_dataset, concatenate_datasets
# after loading, sampling, mapping…
ds = DatasetDict({"train": combined, "validation": val_combined})
ds.push_to_hub("NicoHelemon/MNLP_M2_mcqa_dataset", private=False)
Usage
from datasets import load_dataset
ds = load_dataset("NicoHelemon/MNLP_M2_mcqa_dataset")
print(ds["train"][0])
# {
# "question": "What can genes do?",
# "options": ["Give a young goat hair that looks like its mother's hair", ...],
# "label": "A",
# "label_idx": 0,
# "rationale": "Key fact: genes are a vehicle for passing inherited…",
# "dataset": "openbookqa"
# }
Licensing
This collection is released under the Apache-2.0 license. Original source datasets may carry their own licenses—please cite appropriately.
Citation
If you use this dataset, please cite:
@misc
{helemon2025m2mcqa,
title = {MNLP M2 MCQA Dataset},
author = {Nicolas Gonzalez},
year = 2025,
howpublished = {\url{https://huggingface.co/datasets/NicoHelemon/MNLP_M2_mcqa_dataset}},
}
And please also cite the original datasets:
@misc{mihaylov2018suitarmorconductelectricity,
title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
year={2018},
eprint={1809.02789},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/1809.02789},
}
@misc{welbl2017crowdsourcingmultiplechoicescience,
title={Crowdsourcing Multiple Choice Science Questions},
author={Johannes Welbl and Nelson F. Liu and Matt Gardner},
year={2017},
eprint={1707.06209},
archivePrefix={arXiv},
primaryClass={cs.HC},
url={https://arxiv.org/abs/1707.06209},
}
@misc{hendrycks2021measuringmassivemultitasklanguage,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
year={2021},
eprint={2009.03300},
archivePrefix={arXiv},
primaryClass={cs.CY},
url={https://arxiv.org/abs/2009.03300},
}
@misc{ling2017programinductionrationalegeneration,
title={Program Induction by Rationale Generation : Learning to Solve and Explain Algebraic Word Problems},
author={Wang Ling and Dani Yogatama and Chris Dyer and Phil Blunsom},
year={2017},
eprint={1705.04146},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/1705.04146},
}
@misc{pal2022medmcqalargescalemultisubject,
title={MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering},
author={Ankit Pal and Logesh Kumar Umapathi and Malaikannan Sankarasubbu},
year={2022},
eprint={2203.14371},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2203.14371},
}