Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
NicoHelemon's picture
Update README.md
5f3679c verified
---
dataset_info:
features:
- name: question
dtype: string
- name: options
sequence: string
- name: rationale
dtype: string
- name: label
dtype: string
- name: label_idx
dtype: int64
- name: dataset
dtype: string
splits:
- name: train
num_bytes: 203046319
num_examples: 200000
- name: validation
num_bytes: 264310
num_examples: 519
download_size: 122985245
dataset_size: 203310629
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
license: apache-2.0
task_categories:
- multiple-choice
language:
- en
size_categories:
- 100K<n<1M
---
# MNLP M2 MCQA Dataset
A unified multiple-choice question answering (MCQA) benchmark on STEM subjects combining samples from OpenBookQA, SciQ, MMLU-auxiliary, AQUA-Rat, and MedMCQA.
## Dataset Summary
This dataset merges five existing science and knowledge-based MCQA datasets into one standardized format:
| Source | Train samples |
| ---------- | ------------: |
| OpenBookQA | 4 900 |
| SciQ | 10 000 |
| MMLU-aux | 85 100 |
| AQUA-Rat | 50 000 |
| MedMCQA | 50 000 |
| **Total** | **200 000** |
## Supported Tasks and Leaderboards
* **Task:** Multiple-Choice Question Answering (`multiple-choice-question-answering`)
* **Metrics:** Accuracy
## Languages
* English
## Dataset Structure
Each example has the following fields:
| Name | Type | Description |
| ----------- | -------------- | ------------------------------------------------ |
| `question` | `string` | The question stem. |
| `options` | `list[string]` | List of 4-5 answer choices. |
| `label` | `string` | The correct answer letter, e.g. `"A"`, or `"a"`. |
| `label_idx` | `int` | Zero-based index of the correct answer (0–4). |
| `rationale` | `string` | (Optional) Supporting fact or rationale text. |
| `dataset` | `string` | Source dataset name (`openbookqa`, `sciq`, etc.) |
### Splits
```
DatasetDict({
train: Dataset(num_rows=200000),
validation: Dataset(num_rows=519),
})
```
## Dataset Creation
1. **Source Datasets**
* OpenBookQA (`allenai/openbookqa`)
* SciQ (`allenai/sciq`)
* MMLU-auxiliary (`cais/mmlu`, config=`all`)
* AQUA-Rat (`deepmind/aqua_rat`)
* MedMCQA (`openlifescienceai/medmcqa`)
2. **Sampling**
We sample each training split down to a fixed size (4 900–85 100 examples). Validation examples are sampled per source by first computing each dataset’s original validation-to-train ratio (len(validation)/len(train)), taking the minimum of these ratios and 5 %, and then holding out that fraction from each source.
3. **Unification**
All examples are mapped to a common schema (`question`, `options`, `label`, …) with minimal preprocessing.
4. **Push to Hub**
```python
from datasets import DatasetDict, load_dataset, concatenate_datasets
# after loading, sampling, mapping…
ds = DatasetDict({"train": combined, "validation": val_combined})
ds.push_to_hub("NicoHelemon/MNLP_M2_mcqa_dataset", private=False)
```
## Usage
```python
from datasets import load_dataset
ds = load_dataset("NicoHelemon/MNLP_M2_mcqa_dataset")
print(ds["train"][0])
# {
# "question": "What can genes do?",
# "options": ["Give a young goat hair that looks like its mother's hair", ...],
# "label": "A",
# "label_idx": 0,
# "rationale": "Key fact: genes are a vehicle for passing inherited…",
# "dataset": "openbookqa"
# }
```
## Licensing
This collection is released under the **Apache-2.0** license.
Original source datasets may carry their own licenses—please cite appropriately.
## Citation
If you use this dataset, please cite:
```bibtex
@misc
{helemon2025m2mcqa,
title = {MNLP M2 MCQA Dataset},
author = {Nicolas Gonzalez},
year = 2025,
howpublished = {\url{https://huggingface.co/datasets/NicoHelemon/MNLP_M2_mcqa_dataset}},
}
```
And please also cite the original datasets:
```bibtex
@misc{mihaylov2018suitarmorconductelectricity,
title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
year={2018},
eprint={1809.02789},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/1809.02789},
}
@misc{welbl2017crowdsourcingmultiplechoicescience,
title={Crowdsourcing Multiple Choice Science Questions},
author={Johannes Welbl and Nelson F. Liu and Matt Gardner},
year={2017},
eprint={1707.06209},
archivePrefix={arXiv},
primaryClass={cs.HC},
url={https://arxiv.org/abs/1707.06209},
}
@misc{hendrycks2021measuringmassivemultitasklanguage,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
year={2021},
eprint={2009.03300},
archivePrefix={arXiv},
primaryClass={cs.CY},
url={https://arxiv.org/abs/2009.03300},
}
@misc{ling2017programinductionrationalegeneration,
title={Program Induction by Rationale Generation : Learning to Solve and Explain Algebraic Word Problems},
author={Wang Ling and Dani Yogatama and Chris Dyer and Phil Blunsom},
year={2017},
eprint={1705.04146},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/1705.04146},
}
@misc{pal2022medmcqalargescalemultisubject,
title={MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering},
author={Ankit Pal and Logesh Kumar Umapathi and Malaikannan Sankarasubbu},
year={2022},
eprint={2203.14371},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2203.14371},
}
```