|
|
--- |
|
|
dataset_info: |
|
|
features: |
|
|
- name: question |
|
|
dtype: string |
|
|
- name: options |
|
|
sequence: string |
|
|
- name: rationale |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: string |
|
|
- name: label_idx |
|
|
dtype: int64 |
|
|
- name: dataset |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 203046319 |
|
|
num_examples: 200000 |
|
|
- name: validation |
|
|
num_bytes: 264310 |
|
|
num_examples: 519 |
|
|
download_size: 122985245 |
|
|
dataset_size: 203310629 |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: train |
|
|
path: data/train-* |
|
|
- split: validation |
|
|
path: data/validation-* |
|
|
license: apache-2.0 |
|
|
task_categories: |
|
|
- multiple-choice |
|
|
language: |
|
|
- en |
|
|
size_categories: |
|
|
- 100K<n<1M |
|
|
--- |
|
|
|
|
|
|
|
|
# MNLP M2 MCQA Dataset |
|
|
|
|
|
A unified multiple-choice question answering (MCQA) benchmark on STEM subjects combining samples from OpenBookQA, SciQ, MMLU-auxiliary, AQUA-Rat, and MedMCQA. |
|
|
|
|
|
## Dataset Summary |
|
|
|
|
|
This dataset merges five existing science and knowledge-based MCQA datasets into one standardized format: |
|
|
|
|
|
| Source | Train samples | |
|
|
| ---------- | ------------: | |
|
|
| OpenBookQA | 4 900 | |
|
|
| SciQ | 10 000 | |
|
|
| MMLU-aux | 85 100 | |
|
|
| AQUA-Rat | 50 000 | |
|
|
| MedMCQA | 50 000 | |
|
|
| **Total** | **200 000** | |
|
|
|
|
|
## Supported Tasks and Leaderboards |
|
|
|
|
|
* **Task:** Multiple-Choice Question Answering (`multiple-choice-question-answering`) |
|
|
* **Metrics:** Accuracy |
|
|
|
|
|
## Languages |
|
|
|
|
|
* English |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
Each example has the following fields: |
|
|
|
|
|
| Name | Type | Description | |
|
|
| ----------- | -------------- | ------------------------------------------------ | |
|
|
| `question` | `string` | The question stem. | |
|
|
| `options` | `list[string]` | List of 4-5 answer choices. | |
|
|
| `label` | `string` | The correct answer letter, e.g. `"A"`, or `"a"`. | |
|
|
| `label_idx` | `int` | Zero-based index of the correct answer (0–4). | |
|
|
| `rationale` | `string` | (Optional) Supporting fact or rationale text. | |
|
|
| `dataset` | `string` | Source dataset name (`openbookqa`, `sciq`, etc.) | |
|
|
|
|
|
### Splits |
|
|
|
|
|
``` |
|
|
DatasetDict({ |
|
|
train: Dataset(num_rows=200000), |
|
|
validation: Dataset(num_rows=519), |
|
|
}) |
|
|
``` |
|
|
|
|
|
## Dataset Creation |
|
|
|
|
|
1. **Source Datasets** |
|
|
|
|
|
* OpenBookQA (`allenai/openbookqa`) |
|
|
* SciQ (`allenai/sciq`) |
|
|
* MMLU-auxiliary (`cais/mmlu`, config=`all`) |
|
|
* AQUA-Rat (`deepmind/aqua_rat`) |
|
|
* MedMCQA (`openlifescienceai/medmcqa`) |
|
|
|
|
|
2. **Sampling** |
|
|
We sample each training split down to a fixed size (4 900–85 100 examples). Validation examples are sampled per source by first computing each dataset’s original validation-to-train ratio (len(validation)/len(train)), taking the minimum of these ratios and 5 %, and then holding out that fraction from each source. |
|
|
|
|
|
3. **Unification** |
|
|
All examples are mapped to a common schema (`question`, `options`, `label`, …) with minimal preprocessing. |
|
|
|
|
|
4. **Push to Hub** |
|
|
|
|
|
```python |
|
|
from datasets import DatasetDict, load_dataset, concatenate_datasets |
|
|
|
|
|
# after loading, sampling, mapping… |
|
|
ds = DatasetDict({"train": combined, "validation": val_combined}) |
|
|
ds.push_to_hub("NicoHelemon/MNLP_M2_mcqa_dataset", private=False) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
ds = load_dataset("NicoHelemon/MNLP_M2_mcqa_dataset") |
|
|
print(ds["train"][0]) |
|
|
# { |
|
|
# "question": "What can genes do?", |
|
|
# "options": ["Give a young goat hair that looks like its mother's hair", ...], |
|
|
# "label": "A", |
|
|
# "label_idx": 0, |
|
|
# "rationale": "Key fact: genes are a vehicle for passing inherited…", |
|
|
# "dataset": "openbookqa" |
|
|
# } |
|
|
``` |
|
|
|
|
|
## Licensing |
|
|
|
|
|
This collection is released under the **Apache-2.0** license. |
|
|
Original source datasets may carry their own licenses—please cite appropriately. |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this dataset, please cite: |
|
|
|
|
|
```bibtex |
|
|
|
|
|
|
|
|
@misc |
|
|
{helemon2025m2mcqa, |
|
|
title = {MNLP M2 MCQA Dataset}, |
|
|
author = {Nicolas Gonzalez}, |
|
|
year = 2025, |
|
|
howpublished = {\url{https://huggingface.co/datasets/NicoHelemon/MNLP_M2_mcqa_dataset}}, |
|
|
} |
|
|
``` |
|
|
|
|
|
And please also cite the original datasets: |
|
|
|
|
|
```bibtex |
|
|
|
|
|
@misc{mihaylov2018suitarmorconductelectricity, |
|
|
title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering}, |
|
|
author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal}, |
|
|
year={2018}, |
|
|
eprint={1809.02789}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL}, |
|
|
url={https://arxiv.org/abs/1809.02789}, |
|
|
} |
|
|
|
|
|
@misc{welbl2017crowdsourcingmultiplechoicescience, |
|
|
title={Crowdsourcing Multiple Choice Science Questions}, |
|
|
author={Johannes Welbl and Nelson F. Liu and Matt Gardner}, |
|
|
year={2017}, |
|
|
eprint={1707.06209}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.HC}, |
|
|
url={https://arxiv.org/abs/1707.06209}, |
|
|
} |
|
|
|
|
|
@misc{hendrycks2021measuringmassivemultitasklanguage, |
|
|
title={Measuring Massive Multitask Language Understanding}, |
|
|
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt}, |
|
|
year={2021}, |
|
|
eprint={2009.03300}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CY}, |
|
|
url={https://arxiv.org/abs/2009.03300}, |
|
|
} |
|
|
|
|
|
@misc{ling2017programinductionrationalegeneration, |
|
|
title={Program Induction by Rationale Generation : Learning to Solve and Explain Algebraic Word Problems}, |
|
|
author={Wang Ling and Dani Yogatama and Chris Dyer and Phil Blunsom}, |
|
|
year={2017}, |
|
|
eprint={1705.04146}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.AI}, |
|
|
url={https://arxiv.org/abs/1705.04146}, |
|
|
} |
|
|
|
|
|
@misc{pal2022medmcqalargescalemultisubject, |
|
|
title={MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering}, |
|
|
author={Ankit Pal and Logesh Kumar Umapathi and Malaikannan Sankarasubbu}, |
|
|
year={2022}, |
|
|
eprint={2203.14371}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL}, |
|
|
url={https://arxiv.org/abs/2203.14371}, |
|
|
} |
|
|
|
|
|
``` |