metadata
license: cc-by-sa-4.0
task_categories:
- text-retrieval
- text-generation
language:
- de
tags:
- wiktionary
- dictionary
- german
- linguistics
- morphology
- semantics
- normalized
size_categories:
- 100K<n<1M
German Wiktionary - Normalized SQLite Database
A fully normalized, production-ready SQLite database of German Wiktionary with complete linguistic information and optimized query performance.
π― Key Features
- β Zero data loss: All information from original Wiktionary preserved
- β‘ Lightning-fast queries: Comprehensive indexing (< 5ms typical queries)
- π Full grammatical analysis: Complete inflection paradigms, word forms, 185 unique grammatical tags
- π Semantic relations: Synonyms, antonyms, derived/related terms
- π Multi-language: Translations to 100+ languages
- π± Mobile-ready: Optimized for Flutter/Dart apps on all platforms
- π£οΈ Pronunciation: IPA, audio files, rhymes
- π Rich examples: Usage examples with citations
- π Proper normalization: Tags/topics/categories deduplicated (3NF)
π Database Statistics
- Entries: 970,801 German words
- Word senses: 3.1M+ definitions with glosses
- Translations: 1.1M+ translations
- Word forms: 6.1M+ inflected forms
- Pronunciations: 2.3M+ IPA/audio entries
- Examples: 427K+ usage examples
- Unique tags: 185 grammatical tags
- Unique topics: 58 domain topics
- Unique categories: 352 Wiktionary categories
- File size: ~3.6 GB (uncompressed), ~1.8 GB (compressed)
ποΈ Database Schema
Lookup Tables (Deduplicated)
- tags: Grammatical tags (nominative, plural, past, etc.)
- topics: Domain topics (biology, law, sports, etc.)
- categories: Wiktionary categories
Core Tables
- entries: Main word entries
- senses: Word senses/meanings
- glosses: Definitions for each sense
- examples: Usage examples with citations
Morphology
- forms: All inflected forms (declensions, conjugations)
- form_tags: Many-to-many: forms β grammatical tags
- hyphenations: Syllable breaks
Phonology
- sounds: IPA pronunciations, audio URLs, rhymes
- sound_tags: Pronunciation variants
Semantics
- synonyms: Synonymous words
- antonyms: Opposite words
- derived_terms: Morphologically derived words
- related_terms: Semantically related words
- synonym_tags/synonym_topics: Synonym metadata
Translation
- translations: Translations to other languages
- translation_tags: Translation grammatical tags
Metadata
- entry_tags: Word-level tags
- entry_categories: Wiktionary categories
- sense_tags/sense_topics/sense_categories: Sense-level metadata
π Usage
Download
from huggingface_hub import hf_hub_download
import sqlite3
import gzip
import shutil
# Download compressed database
db_gz_path = hf_hub_download(
repo_id="cstr/de-wiktionary-sqlite-normalized",
filename="de_wiktionary_normalized.db",
repo_type="dataset"
)
# Decompress if needed
if db_gz_path.endswith('.gz'):
db_path = db_gz_path[:-3]
with gzip.open(db_gz_path, 'rb') as f_in:
with open(db_path, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
else:
db_path = db_gz_path
# Connect
conn = sqlite3.connect(db_path)
Python Examples
import sqlite3
conn = sqlite3.connect('de_wiktionary_normalized.db')
cursor = conn.cursor()
# Example 1: Get all inflections with grammatical tags
cursor.execute('''
SELECT f.form_text, GROUP_CONCAT(t.tag, ', ') as tags
FROM entries e
JOIN forms f ON e.id = f.entry_id
LEFT JOIN form_tags ft ON f.id = ft.form_id
LEFT JOIN tags t ON ft.tag_id = t.id
WHERE e.word = ? AND e.lang = 'Deutsch'
GROUP BY f.id
''', ('Haus',))
for form, tags in cursor.fetchall():
print(f"{form}: {tags}")
# Example 2: Get synonyms
cursor.execute('''
SELECT s.synonym_word
FROM entries e
JOIN synonyms s ON e.id = s.entry_id
WHERE e.word = ? AND e.lang = 'Deutsch'
''', ('schnell',))
synonyms = [row[0] for row in cursor.fetchall()]
print(f"Synonyms: {synonyms}")
# Example 3: Get IPA pronunciation
cursor.execute('''
SELECT s.ipa
FROM entries e
JOIN sounds s ON e.id = s.entry_id
WHERE e.word = ? AND s.ipa IS NOT NULL
''', ('Haus',))
print("IPA:", [row[0] for row in cursor.fetchall()])
# Example 4: Get definitions
cursor.execute('''
SELECT g.gloss_text
FROM entries e
JOIN senses se ON e.id = se.entry_id
JOIN glosses g ON se.id = g.sense_id
WHERE e.word = ? AND e.lang = 'Deutsch'
''', ('Liebe',))
print("Definitions:")
for (gloss,) in cursor.fetchall():
print(f" - {gloss}")
# Example 5: Get English translations
cursor.execute('''
SELECT t.word
FROM entries e
JOIN translations t ON e.id = t.entry_id
WHERE e.word = ? AND t.lang_code = 'en'
''', ('Hund',))
print("English:", [row[0] for row in cursor.fetchall()])
# Example 6: Find words by topic
cursor.execute('''
SELECT DISTINCT e.word
FROM entries e
JOIN senses s ON e.id = s.entry_id
JOIN sense_topics st ON s.id = st.sense_id
JOIN topics t ON st.topic_id = t.id
WHERE t.topic = 'biology'
LIMIT 20
''')
print("Biology terms:", [row[0] for row in cursor.fetchall()])
# Example 7: Autocomplete search
cursor.execute('''
SELECT DISTINCT word
FROM entries
WHERE word LIKE ? AND lang = 'Deutsch'
ORDER BY word
LIMIT 10
''', ('Sch%',))
print("Words starting with 'Sch':", [row[0] for row in cursor.fetchall()])
conn.close()
Flutter/Dart
import 'package:sqflite/sqflite.dart';
import 'package:http/http.dart' as http;
import 'package:path/path.dart';
import 'package:path_provider/path_provider.dart';
import 'dart:io';
import 'package:archive/archive_io.dart';
class WiktionaryDB {
static Database? _database;
Future<Database> get database async {
if (_database != null) return _database!;
_database = await initDB();
return _database!;
}
Future<Database> initDB() async {
final dir = await getApplicationDocumentsDirectory();
final dbPath = join(dir.path, 'de_wiktionary.db');
// Download and decompress on first run
if (!await File(dbPath).exists()) {
final url = 'https://huggingface.co/datasets/cstr/de-wiktionary-sqlite-normalized/resolve/main/de_wiktionary_normalized.db';
print('Downloading database...');
final response = await http.get(Uri.parse(url));
final gzPath = join(dir.path, 'de_wiktionary.db.gz');
await File(gzPath).writeAsBytes(response.bodyBytes);
print('Decompressing...');
final gzFile = File(gzPath);
final dbFile = File(dbPath);
// Decompress gzip
final bytes = gzFile.readAsBytesSync();
final archive = GZipDecoder().decodeBytes(bytes);
await dbFile.writeAsBytes(archive);
// Clean up
await gzFile.delete();
print('Database ready!');
}
return await openDatabase(dbPath, version: 1);
}
// Get word forms with grammatical tags
Future<List<Map<String, dynamic>>> getWordForms(String word) async {
final db = await database;
return await db.rawQuery('''
SELECT f.form_text, GROUP_CONCAT(t.tag, ', ') as tags
FROM entries e
JOIN forms f ON e.id = f.entry_id
LEFT JOIN form_tags ft ON f.id = ft.form_id
LEFT JOIN tags t ON ft.tag_id = t.id
WHERE e.word = ? AND e.lang = 'Deutsch'
GROUP BY f.id
''', [word]);
}
// Get synonyms
Future<List<String>> getSynonyms(String word) async {
final db = await database;
final results = await db.rawQuery('''
SELECT s.synonym_word
FROM entries e
JOIN synonyms s ON e.id = s.entry_id
WHERE e.word = ? AND e.lang = 'Deutsch'
''', [word]);
return results.map((r) => r['synonym_word'] as String).toList();
}
// Get IPA pronunciation
Future<List<String>> getIPA(String word) async {
final db = await database;
final results = await db.rawQuery('''
SELECT s.ipa
FROM entries e
JOIN sounds s ON e.id = s.entry_id
WHERE e.word = ? AND s.ipa IS NOT NULL
''', [word]);
return results.map((r) => r['ipa'] as String).toList();
}
// Get definitions
Future<List<String>> getDefinitions(String word) async {
final db = await database;
final results = await db.rawQuery('''
SELECT g.gloss_text
FROM entries e
JOIN senses se ON e.id = se.entry_id
JOIN glosses g ON se.id = g.sense_id
WHERE e.word = ? AND e.lang = 'Deutsch'
''', [word]);
return results.map((r) => r['gloss_text'] as String).toList();
}
// Autocomplete search
Future<List<String>> searchWords(String prefix) async {
final db = await database;
final results = await db.rawQuery('''
SELECT DISTINCT word
FROM entries
WHERE word LIKE ? AND lang = 'Deutsch'
ORDER BY word
LIMIT 20
''', ['$prefix%']);
return results.map((r) => r['word'] as String).toList();
}
}
π Example Queries
Get complete grammatical analysis
SELECT
e.word,
f.form_text,
GROUP_CONCAT(DISTINCT t.tag) as grammatical_tags,
s.ipa
FROM entries e
JOIN forms f ON e.id = f.entry_id
LEFT JOIN form_tags ft ON f.id = ft.form_id
LEFT JOIN tags t ON ft.tag_id = t.id
LEFT JOIN sounds s ON e.id = s.entry_id
WHERE e.word = 'lieben'
GROUP BY f.id;
Find words by grammatical features
SELECT DISTINCT e.word
FROM entries e
JOIN forms f ON e.id = f.entry_id
JOIN form_tags ft ON f.id = ft.form_id
JOIN tags t ON ft.tag_id = t.id
WHERE t.tag = 'irregular' AND e.pos = 'verb'
LIMIT 100;
Get words with semantic relationships
SELECT
e.word,
s.synonym_word,
a.antonym_word
FROM entries e
LEFT JOIN synonyms s ON e.id = s.entry_id
LEFT JOIN antonyms a ON e.id = a.entry_id
WHERE e.word = 'gut';
π± Platform Support
- iOS: β Full support via sqflite
- Android: β Full support via sqflite
- Windows: β Via sqflite_common_ffi
- macOS: β Via sqflite_common_ffi
- Linux: β Via sqflite_common_ffi
- Web: β οΈ Via sql.js (WASM)
π Performance
Typical query times (modern hardware):
- Word lookup: < 1ms
- Get all forms: < 5ms
- Complex multi-table joins: < 20ms
- Autocomplete search: < 10ms
π Source
Original data: cstr/de-wiktionary-extracted
π License
CC-BY-SA 4.0 (same as source)
π οΈ Technical Details
- SQLite Version: 3.x compatible
- Encoding: UTF-8
- Foreign Keys: Enabled
- Indexes: 38 indexes for optimal performance
- Normalization: 3NF with deduplicated tags/topics/categories
π Schema Overview
entries (970K rows)
βββ senses (3.1M) β glosses (3.1M)
βββ forms (6.1M) β form_tags (26M) β tags (185)
βββ sounds (2.3M) β sound_tags
βββ translations (1.1M) β translation_tags
βββ synonyms (162K) β synonym_tags
βββ antonyms
βββ hyphenations (954K)
π€ Contributing
Found an issue? Please report it on the source dataset repository.