cstr's picture
Update README.md
a688aaa verified
metadata
license: cc-by-sa-4.0
task_categories:
  - text-retrieval
  - text-generation
language:
  - de
tags:
  - wiktionary
  - dictionary
  - german
  - linguistics
  - morphology
  - semantics
  - normalized
size_categories:
  - 100K<n<1M

German Wiktionary - Normalized SQLite Database

A fully normalized, production-ready SQLite database of German Wiktionary with complete linguistic information and optimized query performance.

🎯 Key Features

  • βœ… Zero data loss: All information from original Wiktionary preserved
  • ⚑ Lightning-fast queries: Comprehensive indexing (< 5ms typical queries)
  • πŸ” Full grammatical analysis: Complete inflection paradigms, word forms, 185 unique grammatical tags
  • πŸ”— Semantic relations: Synonyms, antonyms, derived/related terms
  • 🌍 Multi-language: Translations to 100+ languages
  • πŸ“± Mobile-ready: Optimized for Flutter/Dart apps on all platforms
  • πŸ—£οΈ Pronunciation: IPA, audio files, rhymes
  • πŸ“š Rich examples: Usage examples with citations
  • πŸŽ“ Proper normalization: Tags/topics/categories deduplicated (3NF)

πŸ“Š Database Statistics

  • Entries: 970,801 German words
  • Word senses: 3.1M+ definitions with glosses
  • Translations: 1.1M+ translations
  • Word forms: 6.1M+ inflected forms
  • Pronunciations: 2.3M+ IPA/audio entries
  • Examples: 427K+ usage examples
  • Unique tags: 185 grammatical tags
  • Unique topics: 58 domain topics
  • Unique categories: 352 Wiktionary categories
  • File size: ~3.6 GB (uncompressed), ~1.8 GB (compressed)

πŸ—οΈ Database Schema

Lookup Tables (Deduplicated)

  • tags: Grammatical tags (nominative, plural, past, etc.)
  • topics: Domain topics (biology, law, sports, etc.)
  • categories: Wiktionary categories

Core Tables

  • entries: Main word entries
  • senses: Word senses/meanings
  • glosses: Definitions for each sense
  • examples: Usage examples with citations

Morphology

  • forms: All inflected forms (declensions, conjugations)
  • form_tags: Many-to-many: forms ↔ grammatical tags
  • hyphenations: Syllable breaks

Phonology

  • sounds: IPA pronunciations, audio URLs, rhymes
  • sound_tags: Pronunciation variants

Semantics

  • synonyms: Synonymous words
  • antonyms: Opposite words
  • derived_terms: Morphologically derived words
  • related_terms: Semantically related words
  • synonym_tags/synonym_topics: Synonym metadata

Translation

  • translations: Translations to other languages
  • translation_tags: Translation grammatical tags

Metadata

  • entry_tags: Word-level tags
  • entry_categories: Wiktionary categories
  • sense_tags/sense_topics/sense_categories: Sense-level metadata

πŸ“– Usage

Download

from huggingface_hub import hf_hub_download
import sqlite3
import gzip
import shutil

# Download compressed database
db_gz_path = hf_hub_download(
    repo_id="cstr/de-wiktionary-sqlite-normalized",
    filename="de_wiktionary_normalized.db",
    repo_type="dataset"
)

# Decompress if needed
if db_gz_path.endswith('.gz'):
    db_path = db_gz_path[:-3]
    with gzip.open(db_gz_path, 'rb') as f_in:
        with open(db_path, 'wb') as f_out:
            shutil.copyfileobj(f_in, f_out)
else:
    db_path = db_gz_path

# Connect
conn = sqlite3.connect(db_path)

Python Examples

import sqlite3

conn = sqlite3.connect('de_wiktionary_normalized.db')
cursor = conn.cursor()

# Example 1: Get all inflections with grammatical tags
cursor.execute('''
    SELECT f.form_text, GROUP_CONCAT(t.tag, ', ') as tags
    FROM entries e
    JOIN forms f ON e.id = f.entry_id
    LEFT JOIN form_tags ft ON f.id = ft.form_id
    LEFT JOIN tags t ON ft.tag_id = t.id
    WHERE e.word = ? AND e.lang = 'Deutsch'
    GROUP BY f.id
''', ('Haus',))

for form, tags in cursor.fetchall():
    print(f"{form}: {tags}")

# Example 2: Get synonyms
cursor.execute('''
    SELECT s.synonym_word
    FROM entries e
    JOIN synonyms s ON e.id = s.entry_id
    WHERE e.word = ? AND e.lang = 'Deutsch'
''', ('schnell',))

synonyms = [row[0] for row in cursor.fetchall()]
print(f"Synonyms: {synonyms}")

# Example 3: Get IPA pronunciation
cursor.execute('''
    SELECT s.ipa
    FROM entries e
    JOIN sounds s ON e.id = s.entry_id
    WHERE e.word = ? AND s.ipa IS NOT NULL
''', ('Haus',))

print("IPA:", [row[0] for row in cursor.fetchall()])

# Example 4: Get definitions
cursor.execute('''
    SELECT g.gloss_text
    FROM entries e
    JOIN senses se ON e.id = se.entry_id
    JOIN glosses g ON se.id = g.sense_id
    WHERE e.word = ? AND e.lang = 'Deutsch'
''', ('Liebe',))

print("Definitions:")
for (gloss,) in cursor.fetchall():
    print(f"  - {gloss}")

# Example 5: Get English translations
cursor.execute('''
    SELECT t.word
    FROM entries e
    JOIN translations t ON e.id = t.entry_id
    WHERE e.word = ? AND t.lang_code = 'en'
''', ('Hund',))

print("English:", [row[0] for row in cursor.fetchall()])

# Example 6: Find words by topic
cursor.execute('''
    SELECT DISTINCT e.word
    FROM entries e
    JOIN senses s ON e.id = s.entry_id
    JOIN sense_topics st ON s.id = st.sense_id
    JOIN topics t ON st.topic_id = t.id
    WHERE t.topic = 'biology'
    LIMIT 20
''')

print("Biology terms:", [row[0] for row in cursor.fetchall()])

# Example 7: Autocomplete search
cursor.execute('''
    SELECT DISTINCT word
    FROM entries
    WHERE word LIKE ? AND lang = 'Deutsch'
    ORDER BY word
    LIMIT 10
''', ('Sch%',))

print("Words starting with 'Sch':", [row[0] for row in cursor.fetchall()])

conn.close()

Flutter/Dart

import 'package:sqflite/sqflite.dart';
import 'package:http/http.dart' as http;
import 'package:path/path.dart';
import 'package:path_provider/path_provider.dart';
import 'dart:io';
import 'package:archive/archive_io.dart';

class WiktionaryDB {
  static Database? _database;
  
  Future<Database> get database async {
    if (_database != null) return _database!;
    _database = await initDB();
    return _database!;
  }
  
  Future<Database> initDB() async {
    final dir = await getApplicationDocumentsDirectory();
    final dbPath = join(dir.path, 'de_wiktionary.db');
    
    // Download and decompress on first run
    if (!await File(dbPath).exists()) {
      final url = 'https://huggingface.co/datasets/cstr/de-wiktionary-sqlite-normalized/resolve/main/de_wiktionary_normalized.db';
      
      print('Downloading database...');
      final response = await http.get(Uri.parse(url));
      
      final gzPath = join(dir.path, 'de_wiktionary.db.gz');
      await File(gzPath).writeAsBytes(response.bodyBytes);
      
      print('Decompressing...');
      final gzFile = File(gzPath);
      final dbFile = File(dbPath);
      
      // Decompress gzip
      final bytes = gzFile.readAsBytesSync();
      final archive = GZipDecoder().decodeBytes(bytes);
      await dbFile.writeAsBytes(archive);
      
      // Clean up
      await gzFile.delete();
      print('Database ready!');
    }
    
    return await openDatabase(dbPath, version: 1);
  }
  
  // Get word forms with grammatical tags
  Future<List<Map<String, dynamic>>> getWordForms(String word) async {
    final db = await database;
    return await db.rawQuery('''
      SELECT f.form_text, GROUP_CONCAT(t.tag, ', ') as tags
      FROM entries e
      JOIN forms f ON e.id = f.entry_id
      LEFT JOIN form_tags ft ON f.id = ft.form_id
      LEFT JOIN tags t ON ft.tag_id = t.id
      WHERE e.word = ? AND e.lang = 'Deutsch'
      GROUP BY f.id
    ''', [word]);
  }
  
  // Get synonyms
  Future<List<String>> getSynonyms(String word) async {
    final db = await database;
    final results = await db.rawQuery('''
      SELECT s.synonym_word
      FROM entries e
      JOIN synonyms s ON e.id = s.entry_id
      WHERE e.word = ? AND e.lang = 'Deutsch'
    ''', [word]);
    return results.map((r) => r['synonym_word'] as String).toList();
  }
  
  // Get IPA pronunciation
  Future<List<String>> getIPA(String word) async {
    final db = await database;
    final results = await db.rawQuery('''
      SELECT s.ipa
      FROM entries e
      JOIN sounds s ON e.id = s.entry_id
      WHERE e.word = ? AND s.ipa IS NOT NULL
    ''', [word]);
    return results.map((r) => r['ipa'] as String).toList();
  }
  
  // Get definitions
  Future<List<String>> getDefinitions(String word) async {
    final db = await database;
    final results = await db.rawQuery('''
      SELECT g.gloss_text
      FROM entries e
      JOIN senses se ON e.id = se.entry_id
      JOIN glosses g ON se.id = g.sense_id
      WHERE e.word = ? AND e.lang = 'Deutsch'
    ''', [word]);
    return results.map((r) => r['gloss_text'] as String).toList();
  }
  
  // Autocomplete search
  Future<List<String>> searchWords(String prefix) async {
    final db = await database;
    final results = await db.rawQuery('''
      SELECT DISTINCT word
      FROM entries
      WHERE word LIKE ? AND lang = 'Deutsch'
      ORDER BY word
      LIMIT 20
    ''', ['$prefix%']);
    return results.map((r) => r['word'] as String).toList();
  }
}

πŸ” Example Queries

Get complete grammatical analysis

SELECT 
    e.word,
    f.form_text,
    GROUP_CONCAT(DISTINCT t.tag) as grammatical_tags,
    s.ipa
FROM entries e
JOIN forms f ON e.id = f.entry_id
LEFT JOIN form_tags ft ON f.id = ft.form_id
LEFT JOIN tags t ON ft.tag_id = t.id
LEFT JOIN sounds s ON e.id = s.entry_id
WHERE e.word = 'lieben'
GROUP BY f.id;

Find words by grammatical features

SELECT DISTINCT e.word
FROM entries e
JOIN forms f ON e.id = f.entry_id
JOIN form_tags ft ON f.id = ft.form_id
JOIN tags t ON ft.tag_id = t.id
WHERE t.tag = 'irregular' AND e.pos = 'verb'
LIMIT 100;

Get words with semantic relationships

SELECT 
    e.word,
    s.synonym_word,
    a.antonym_word
FROM entries e
LEFT JOIN synonyms s ON e.id = s.entry_id
LEFT JOIN antonyms a ON e.id = a.entry_id
WHERE e.word = 'gut';

πŸ“± Platform Support

  • iOS: βœ… Full support via sqflite
  • Android: βœ… Full support via sqflite
  • Windows: βœ… Via sqflite_common_ffi
  • macOS: βœ… Via sqflite_common_ffi
  • Linux: βœ… Via sqflite_common_ffi
  • Web: ⚠️ Via sql.js (WASM)

πŸš€ Performance

Typical query times (modern hardware):

  • Word lookup: < 1ms
  • Get all forms: < 5ms
  • Complex multi-table joins: < 20ms
  • Autocomplete search: < 10ms

πŸ”— Source

Original data: cstr/de-wiktionary-extracted

πŸ“œ License

CC-BY-SA 4.0 (same as source)

πŸ› οΈ Technical Details

  • SQLite Version: 3.x compatible
  • Encoding: UTF-8
  • Foreign Keys: Enabled
  • Indexes: 38 indexes for optimal performance
  • Normalization: 3NF with deduplicated tags/topics/categories

πŸ“Š Schema Overview

entries (970K rows)
β”œβ”€β”€ senses (3.1M) β†’ glosses (3.1M)
β”œβ”€β”€ forms (6.1M) β†’ form_tags (26M) β†’ tags (185)
β”œβ”€β”€ sounds (2.3M) β†’ sound_tags
β”œβ”€β”€ translations (1.1M) β†’ translation_tags
β”œβ”€β”€ synonyms (162K) β†’ synonym_tags
β”œβ”€β”€ antonyms
└── hyphenations (954K)

🀝 Contributing

Found an issue? Please report it on the source dataset repository.