|
|
--- |
|
|
license: cc-by-sa-4.0 |
|
|
task_categories: |
|
|
- text-retrieval |
|
|
- text-generation |
|
|
language: |
|
|
- de |
|
|
tags: |
|
|
- wiktionary |
|
|
- dictionary |
|
|
- german |
|
|
- linguistics |
|
|
- morphology |
|
|
- semantics |
|
|
- normalized |
|
|
size_categories: |
|
|
- 100K<n<1M |
|
|
--- |
|
|
|
|
|
# German Wiktionary - Normalized SQLite Database |
|
|
|
|
|
A fully normalized, production-ready SQLite database of German Wiktionary with complete linguistic information and optimized query performance. |
|
|
|
|
|
## π― Key Features |
|
|
|
|
|
- **β
Zero data loss**: All information from original Wiktionary preserved |
|
|
- **β‘ Lightning-fast queries**: Comprehensive indexing (< 5ms typical queries) |
|
|
- **π Full grammatical analysis**: Complete inflection paradigms, word forms, 185 unique grammatical tags |
|
|
- **π Semantic relations**: Synonyms, antonyms, derived/related terms |
|
|
- **π Multi-language**: Translations to 100+ languages |
|
|
- **π± Mobile-ready**: Optimized for Flutter/Dart apps on all platforms |
|
|
- **π£οΈ Pronunciation**: IPA, audio files, rhymes |
|
|
- **π Rich examples**: Usage examples with citations |
|
|
- **π Proper normalization**: Tags/topics/categories deduplicated (3NF) |
|
|
|
|
|
## π Database Statistics |
|
|
|
|
|
- **Entries**: 970,801 German words |
|
|
- **Word senses**: 3.1M+ definitions with glosses |
|
|
- **Translations**: 1.1M+ translations |
|
|
- **Word forms**: 6.1M+ inflected forms |
|
|
- **Pronunciations**: 2.3M+ IPA/audio entries |
|
|
- **Examples**: 427K+ usage examples |
|
|
- **Unique tags**: 185 grammatical tags |
|
|
- **Unique topics**: 58 domain topics |
|
|
- **Unique categories**: 352 Wiktionary categories |
|
|
- **File size**: ~3.6 GB (uncompressed), ~1.8 GB (compressed) |
|
|
|
|
|
## ποΈ Database Schema |
|
|
|
|
|
### Lookup Tables (Deduplicated) |
|
|
- **tags**: Grammatical tags (nominative, plural, past, etc.) |
|
|
- **topics**: Domain topics (biology, law, sports, etc.) |
|
|
- **categories**: Wiktionary categories |
|
|
|
|
|
### Core Tables |
|
|
- **entries**: Main word entries |
|
|
- **senses**: Word senses/meanings |
|
|
- **glosses**: Definitions for each sense |
|
|
- **examples**: Usage examples with citations |
|
|
|
|
|
### Morphology |
|
|
- **forms**: All inflected forms (declensions, conjugations) |
|
|
- **form_tags**: Many-to-many: forms β grammatical tags |
|
|
- **hyphenations**: Syllable breaks |
|
|
|
|
|
### Phonology |
|
|
- **sounds**: IPA pronunciations, audio URLs, rhymes |
|
|
- **sound_tags**: Pronunciation variants |
|
|
|
|
|
### Semantics |
|
|
- **synonyms**: Synonymous words |
|
|
- **antonyms**: Opposite words |
|
|
- **derived_terms**: Morphologically derived words |
|
|
- **related_terms**: Semantically related words |
|
|
- **synonym_tags/synonym_topics**: Synonym metadata |
|
|
|
|
|
### Translation |
|
|
- **translations**: Translations to other languages |
|
|
- **translation_tags**: Translation grammatical tags |
|
|
|
|
|
### Metadata |
|
|
- **entry_tags**: Word-level tags |
|
|
- **entry_categories**: Wiktionary categories |
|
|
- **sense_tags/sense_topics/sense_categories**: Sense-level metadata |
|
|
|
|
|
## π Usage |
|
|
|
|
|
### Download |
|
|
```python |
|
|
from huggingface_hub import hf_hub_download |
|
|
import sqlite3 |
|
|
import gzip |
|
|
import shutil |
|
|
|
|
|
# Download compressed database |
|
|
db_gz_path = hf_hub_download( |
|
|
repo_id="cstr/de-wiktionary-sqlite-normalized", |
|
|
filename="de_wiktionary_normalized.db", |
|
|
repo_type="dataset" |
|
|
) |
|
|
|
|
|
# Decompress if needed |
|
|
if db_gz_path.endswith('.gz'): |
|
|
db_path = db_gz_path[:-3] |
|
|
with gzip.open(db_gz_path, 'rb') as f_in: |
|
|
with open(db_path, 'wb') as f_out: |
|
|
shutil.copyfileobj(f_in, f_out) |
|
|
else: |
|
|
db_path = db_gz_path |
|
|
|
|
|
# Connect |
|
|
conn = sqlite3.connect(db_path) |
|
|
``` |
|
|
|
|
|
### Python Examples |
|
|
```python |
|
|
import sqlite3 |
|
|
|
|
|
conn = sqlite3.connect('de_wiktionary_normalized.db') |
|
|
cursor = conn.cursor() |
|
|
|
|
|
# Example 1: Get all inflections with grammatical tags |
|
|
cursor.execute(''' |
|
|
SELECT f.form_text, GROUP_CONCAT(t.tag, ', ') as tags |
|
|
FROM entries e |
|
|
JOIN forms f ON e.id = f.entry_id |
|
|
LEFT JOIN form_tags ft ON f.id = ft.form_id |
|
|
LEFT JOIN tags t ON ft.tag_id = t.id |
|
|
WHERE e.word = ? AND e.lang = 'Deutsch' |
|
|
GROUP BY f.id |
|
|
''', ('Haus',)) |
|
|
|
|
|
for form, tags in cursor.fetchall(): |
|
|
print(f"{form}: {tags}") |
|
|
|
|
|
# Example 2: Get synonyms |
|
|
cursor.execute(''' |
|
|
SELECT s.synonym_word |
|
|
FROM entries e |
|
|
JOIN synonyms s ON e.id = s.entry_id |
|
|
WHERE e.word = ? AND e.lang = 'Deutsch' |
|
|
''', ('schnell',)) |
|
|
|
|
|
synonyms = [row[0] for row in cursor.fetchall()] |
|
|
print(f"Synonyms: {synonyms}") |
|
|
|
|
|
# Example 3: Get IPA pronunciation |
|
|
cursor.execute(''' |
|
|
SELECT s.ipa |
|
|
FROM entries e |
|
|
JOIN sounds s ON e.id = s.entry_id |
|
|
WHERE e.word = ? AND s.ipa IS NOT NULL |
|
|
''', ('Haus',)) |
|
|
|
|
|
print("IPA:", [row[0] for row in cursor.fetchall()]) |
|
|
|
|
|
# Example 4: Get definitions |
|
|
cursor.execute(''' |
|
|
SELECT g.gloss_text |
|
|
FROM entries e |
|
|
JOIN senses se ON e.id = se.entry_id |
|
|
JOIN glosses g ON se.id = g.sense_id |
|
|
WHERE e.word = ? AND e.lang = 'Deutsch' |
|
|
''', ('Liebe',)) |
|
|
|
|
|
print("Definitions:") |
|
|
for (gloss,) in cursor.fetchall(): |
|
|
print(f" - {gloss}") |
|
|
|
|
|
# Example 5: Get English translations |
|
|
cursor.execute(''' |
|
|
SELECT t.word |
|
|
FROM entries e |
|
|
JOIN translations t ON e.id = t.entry_id |
|
|
WHERE e.word = ? AND t.lang_code = 'en' |
|
|
''', ('Hund',)) |
|
|
|
|
|
print("English:", [row[0] for row in cursor.fetchall()]) |
|
|
|
|
|
# Example 6: Find words by topic |
|
|
cursor.execute(''' |
|
|
SELECT DISTINCT e.word |
|
|
FROM entries e |
|
|
JOIN senses s ON e.id = s.entry_id |
|
|
JOIN sense_topics st ON s.id = st.sense_id |
|
|
JOIN topics t ON st.topic_id = t.id |
|
|
WHERE t.topic = 'biology' |
|
|
LIMIT 20 |
|
|
''') |
|
|
|
|
|
print("Biology terms:", [row[0] for row in cursor.fetchall()]) |
|
|
|
|
|
# Example 7: Autocomplete search |
|
|
cursor.execute(''' |
|
|
SELECT DISTINCT word |
|
|
FROM entries |
|
|
WHERE word LIKE ? AND lang = 'Deutsch' |
|
|
ORDER BY word |
|
|
LIMIT 10 |
|
|
''', ('Sch%',)) |
|
|
|
|
|
print("Words starting with 'Sch':", [row[0] for row in cursor.fetchall()]) |
|
|
|
|
|
conn.close() |
|
|
``` |
|
|
|
|
|
### Flutter/Dart |
|
|
```dart |
|
|
import 'package:sqflite/sqflite.dart'; |
|
|
import 'package:http/http.dart' as http; |
|
|
import 'package:path/path.dart'; |
|
|
import 'package:path_provider/path_provider.dart'; |
|
|
import 'dart:io'; |
|
|
import 'package:archive/archive_io.dart'; |
|
|
|
|
|
class WiktionaryDB { |
|
|
static Database? _database; |
|
|
|
|
|
Future<Database> get database async { |
|
|
if (_database != null) return _database!; |
|
|
_database = await initDB(); |
|
|
return _database!; |
|
|
} |
|
|
|
|
|
Future<Database> initDB() async { |
|
|
final dir = await getApplicationDocumentsDirectory(); |
|
|
final dbPath = join(dir.path, 'de_wiktionary.db'); |
|
|
|
|
|
// Download and decompress on first run |
|
|
if (!await File(dbPath).exists()) { |
|
|
final url = 'https://huggingface.co/datasets/cstr/de-wiktionary-sqlite-normalized/resolve/main/de_wiktionary_normalized.db'; |
|
|
|
|
|
print('Downloading database...'); |
|
|
final response = await http.get(Uri.parse(url)); |
|
|
|
|
|
final gzPath = join(dir.path, 'de_wiktionary.db.gz'); |
|
|
await File(gzPath).writeAsBytes(response.bodyBytes); |
|
|
|
|
|
print('Decompressing...'); |
|
|
final gzFile = File(gzPath); |
|
|
final dbFile = File(dbPath); |
|
|
|
|
|
// Decompress gzip |
|
|
final bytes = gzFile.readAsBytesSync(); |
|
|
final archive = GZipDecoder().decodeBytes(bytes); |
|
|
await dbFile.writeAsBytes(archive); |
|
|
|
|
|
// Clean up |
|
|
await gzFile.delete(); |
|
|
print('Database ready!'); |
|
|
} |
|
|
|
|
|
return await openDatabase(dbPath, version: 1); |
|
|
} |
|
|
|
|
|
// Get word forms with grammatical tags |
|
|
Future<List<Map<String, dynamic>>> getWordForms(String word) async { |
|
|
final db = await database; |
|
|
return await db.rawQuery(''' |
|
|
SELECT f.form_text, GROUP_CONCAT(t.tag, ', ') as tags |
|
|
FROM entries e |
|
|
JOIN forms f ON e.id = f.entry_id |
|
|
LEFT JOIN form_tags ft ON f.id = ft.form_id |
|
|
LEFT JOIN tags t ON ft.tag_id = t.id |
|
|
WHERE e.word = ? AND e.lang = 'Deutsch' |
|
|
GROUP BY f.id |
|
|
''', [word]); |
|
|
} |
|
|
|
|
|
// Get synonyms |
|
|
Future<List<String>> getSynonyms(String word) async { |
|
|
final db = await database; |
|
|
final results = await db.rawQuery(''' |
|
|
SELECT s.synonym_word |
|
|
FROM entries e |
|
|
JOIN synonyms s ON e.id = s.entry_id |
|
|
WHERE e.word = ? AND e.lang = 'Deutsch' |
|
|
''', [word]); |
|
|
return results.map((r) => r['synonym_word'] as String).toList(); |
|
|
} |
|
|
|
|
|
// Get IPA pronunciation |
|
|
Future<List<String>> getIPA(String word) async { |
|
|
final db = await database; |
|
|
final results = await db.rawQuery(''' |
|
|
SELECT s.ipa |
|
|
FROM entries e |
|
|
JOIN sounds s ON e.id = s.entry_id |
|
|
WHERE e.word = ? AND s.ipa IS NOT NULL |
|
|
''', [word]); |
|
|
return results.map((r) => r['ipa'] as String).toList(); |
|
|
} |
|
|
|
|
|
// Get definitions |
|
|
Future<List<String>> getDefinitions(String word) async { |
|
|
final db = await database; |
|
|
final results = await db.rawQuery(''' |
|
|
SELECT g.gloss_text |
|
|
FROM entries e |
|
|
JOIN senses se ON e.id = se.entry_id |
|
|
JOIN glosses g ON se.id = g.sense_id |
|
|
WHERE e.word = ? AND e.lang = 'Deutsch' |
|
|
''', [word]); |
|
|
return results.map((r) => r['gloss_text'] as String).toList(); |
|
|
} |
|
|
|
|
|
// Autocomplete search |
|
|
Future<List<String>> searchWords(String prefix) async { |
|
|
final db = await database; |
|
|
final results = await db.rawQuery(''' |
|
|
SELECT DISTINCT word |
|
|
FROM entries |
|
|
WHERE word LIKE ? AND lang = 'Deutsch' |
|
|
ORDER BY word |
|
|
LIMIT 20 |
|
|
''', ['$prefix%']); |
|
|
return results.map((r) => r['word'] as String).toList(); |
|
|
} |
|
|
} |
|
|
``` |
|
|
|
|
|
## π Example Queries |
|
|
|
|
|
### Get complete grammatical analysis |
|
|
```sql |
|
|
SELECT |
|
|
e.word, |
|
|
f.form_text, |
|
|
GROUP_CONCAT(DISTINCT t.tag) as grammatical_tags, |
|
|
s.ipa |
|
|
FROM entries e |
|
|
JOIN forms f ON e.id = f.entry_id |
|
|
LEFT JOIN form_tags ft ON f.id = ft.form_id |
|
|
LEFT JOIN tags t ON ft.tag_id = t.id |
|
|
LEFT JOIN sounds s ON e.id = s.entry_id |
|
|
WHERE e.word = 'lieben' |
|
|
GROUP BY f.id; |
|
|
``` |
|
|
|
|
|
### Find words by grammatical features |
|
|
```sql |
|
|
SELECT DISTINCT e.word |
|
|
FROM entries e |
|
|
JOIN forms f ON e.id = f.entry_id |
|
|
JOIN form_tags ft ON f.id = ft.form_id |
|
|
JOIN tags t ON ft.tag_id = t.id |
|
|
WHERE t.tag = 'irregular' AND e.pos = 'verb' |
|
|
LIMIT 100; |
|
|
``` |
|
|
|
|
|
### Get words with semantic relationships |
|
|
```sql |
|
|
SELECT |
|
|
e.word, |
|
|
s.synonym_word, |
|
|
a.antonym_word |
|
|
FROM entries e |
|
|
LEFT JOIN synonyms s ON e.id = s.entry_id |
|
|
LEFT JOIN antonyms a ON e.id = a.entry_id |
|
|
WHERE e.word = 'gut'; |
|
|
``` |
|
|
|
|
|
## π± Platform Support |
|
|
|
|
|
- **iOS**: β
Full support via sqflite |
|
|
- **Android**: β
Full support via sqflite |
|
|
- **Windows**: β
Via sqflite_common_ffi |
|
|
- **macOS**: β
Via sqflite_common_ffi |
|
|
- **Linux**: β
Via sqflite_common_ffi |
|
|
- **Web**: β οΈ Via sql.js (WASM) |
|
|
|
|
|
## π Performance |
|
|
|
|
|
Typical query times (modern hardware): |
|
|
- Word lookup: < 1ms |
|
|
- Get all forms: < 5ms |
|
|
- Complex multi-table joins: < 20ms |
|
|
- Autocomplete search: < 10ms |
|
|
|
|
|
## π Source |
|
|
|
|
|
Original data: [cstr/de-wiktionary-extracted](https://huggingface.co/datasets/cstr/de-wiktionary-extracted) |
|
|
|
|
|
## π License |
|
|
|
|
|
CC-BY-SA 4.0 (same as source) |
|
|
|
|
|
## π οΈ Technical Details |
|
|
|
|
|
- **SQLite Version**: 3.x compatible |
|
|
- **Encoding**: UTF-8 |
|
|
- **Foreign Keys**: Enabled |
|
|
- **Indexes**: 38 indexes for optimal performance |
|
|
- **Normalization**: 3NF with deduplicated tags/topics/categories |
|
|
|
|
|
## π Schema Overview |
|
|
``` |
|
|
entries (970K rows) |
|
|
βββ senses (3.1M) β glosses (3.1M) |
|
|
βββ forms (6.1M) β form_tags (26M) β tags (185) |
|
|
βββ sounds (2.3M) β sound_tags |
|
|
βββ translations (1.1M) β translation_tags |
|
|
βββ synonyms (162K) β synonym_tags |
|
|
βββ antonyms |
|
|
βββ hyphenations (954K) |
|
|
``` |
|
|
|
|
|
## π€ Contributing |
|
|
|
|
|
Found an issue? Please report it on the source dataset repository. |
|
|
|