|
|
--- |
|
|
language: alt |
|
|
language_name: Southern Altai |
|
|
language_family: turkic_siberian |
|
|
tags: |
|
|
- wikilangs |
|
|
- nlp |
|
|
- tokenizer |
|
|
- embeddings |
|
|
- n-gram |
|
|
- markov |
|
|
- wikipedia |
|
|
- feature-extraction |
|
|
- sentence-similarity |
|
|
- tokenization |
|
|
- n-grams |
|
|
- markov-chain |
|
|
- text-mining |
|
|
- fasttext |
|
|
- babelvec |
|
|
- vocabulous |
|
|
- vocabulary |
|
|
- monolingual |
|
|
- family-turkic_siberian |
|
|
license: mit |
|
|
library_name: wikilangs |
|
|
pipeline_tag: text-generation |
|
|
datasets: |
|
|
- omarkamali/wikipedia-monthly |
|
|
dataset_info: |
|
|
name: wikipedia-monthly |
|
|
description: Monthly snapshots of Wikipedia articles across 300+ languages |
|
|
metrics: |
|
|
- name: best_compression_ratio |
|
|
type: compression |
|
|
value: 3.686 |
|
|
- name: best_isotropy |
|
|
type: isotropy |
|
|
value: 0.8419 |
|
|
- name: vocabulary_size |
|
|
type: vocab |
|
|
value: 0 |
|
|
generated: 2026-01-03 |
|
|
--- |
|
|
|
|
|
# Southern Altai - Wikilangs Models |
|
|
## Comprehensive Research Report & Full Ablation Study |
|
|
|
|
|
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Southern Altai** Wikipedia data. |
|
|
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. |
|
|
|
|
|
## ๐ Repository Contents |
|
|
|
|
|
### Models & Assets |
|
|
|
|
|
- Tokenizers (8k, 16k, 32k, 64k) |
|
|
- N-gram models (2, 3, 4, 5-gram) |
|
|
- Markov chains (context of 1, 2, 3, 4 and 5) |
|
|
- Subword N-gram and Markov chains |
|
|
- Embeddings in various sizes and dimensions (aligned and unaligned) |
|
|
- Language Vocabulary |
|
|
- Language Statistics |
|
|
|
|
|
 |
|
|
|
|
|
### Analysis and Evaluation |
|
|
|
|
|
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation) |
|
|
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) |
|
|
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation) |
|
|
- [4. Vocabulary Analysis](#4-vocabulary-analysis) |
|
|
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) |
|
|
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) |
|
|
- [7. Summary & Recommendations](#7-summary--recommendations) |
|
|
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) |
|
|
- [Visualizations Index](#visualizations-index) |
|
|
|
|
|
--- |
|
|
## 1. Tokenizer Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |
|
|
|------------|-------------|---------------|----------|--------------| |
|
|
| **8k** | 3.486x | 3.49 | 0.3992% | 972,913 | |
|
|
| **16k** | 3.686x ๐ | 3.69 | 0.4221% | 920,240 | |
|
|
|
|
|
### Tokenization Examples |
|
|
|
|
|
Below are sample sentences tokenized with each vocabulary size: |
|
|
|
|
|
**Sample 1:** `ะาฅะฝััั ะบะพัััะฝ () โ ำงะฒำงั ะผะพาฅะพะปะดัาฅ ะบะพัััะฝ. ะญัะธะผะพะปะพะณะธัะทั ะาฅะฝััั โ (ะบะฐะปะบะฐ ะผะพาฅะพะปะดะพะฟ ะพ...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โะพาฅะฝััั โะบะพัััะฝ โ() โโ โำงะฒำงั โะผะพาฅะพะปะดัาฅ โะบะพัััะฝ . โััะธะผะพะปะพะณะธัะทั โะพาฅะฝััั ... (+27 more)` | 37 | |
|
|
| 16k | `โะพาฅะฝััั โะบะพัััะฝ โ() โโ โำงะฒำงั โะผะพาฅะพะปะดัาฅ โะบะพัััะฝ . โััะธะผะพะปะพะณะธัะทั โะพาฅะฝััั ... (+25 more)` | 35 | |
|
|
|
|
|
**Sample 2:** `ะญัะบะธ ะงะตัะบะฐะฑ (, ) โ ัััั ะ ะพััะธัะดะฐ ะขะฐัะฐัััะฐะฝ ะ ะตัะฟัะฑะปะธะบะฐะฝัาฅ ะะฐะนะฑัั ะฐะนะผะฐะณัะฝะดะฐ ะบะธัะตั....` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โััะบะธ โัะต ั ะบะฐ ะฑ โ(, โ) โโ โัััั โัะพััะธัะดะฐ ... (+12 more)` | 22 | |
|
|
| 16k | `โััะบะธ โัะตัะบะฐะฑ โ(, โ) โโ โัััั โัะพััะธัะดะฐ โัะฐัะฐัััะฐะฝ โัะตัะฟัะฑะปะธะบะฐะฝัาฅ โะบะฐะนะฑัั ... (+7 more)` | 17 | |
|
|
|
|
|
**Sample 3:** `ะขะฐะฝะบ - ัะตะผะธัะปะต ัะฐะฑัะปะณะฐะฝ ัะตะฑะธะฝะณะธััะตัะปำฑ ัััััะป ะผะฐัะธะฝะฐ.` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โัะฐะฝะบ โ- โัะตะผะธั ะปะต โัะฐ ะฑ ัะปะณะฐะฝ โัะตะฑะธะฝ ะณะธ ั ... (+6 more)` | 16 | |
|
|
| 16k | `โัะฐะฝะบ โ- โัะตะผะธัะปะต โัะฐะฑัะปะณะฐะฝ โัะตะฑะธะฝะณะธััะตัะปำฑ โัััััะป โะผะฐัะธะฝะฐ .` | 8 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Compression:** 16k achieves 3.686x compression |
|
|
- **Lowest UNK Rate:** 8k with 0.3992% unknown tokens |
|
|
- **Trade-off:** Larger vocabularies improve compression but increase model size |
|
|
- **Recommendation:** 32k vocabulary provides optimal balance for production use |
|
|
|
|
|
--- |
|
|
## 2. N-gram Model Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |
|
|
|--------|---------|------------|---------|----------------|------------------|-------------------| |
|
|
| **2-gram** | Word | 4,423 | 12.11 | 11,976 | 16.5% | 55.6% | |
|
|
| **2-gram** | Subword | 413 ๐ | 8.69 | 2,708 | 55.2% | 98.2% | |
|
|
| **3-gram** | Word | 5,471 | 12.42 | 16,254 | 15.6% | 52.1% | |
|
|
| **3-gram** | Subword | 3,292 | 11.68 | 22,428 | 19.5% | 62.9% | |
|
|
| **4-gram** | Word | 8,010 | 12.97 | 27,702 | 15.3% | 46.3% | |
|
|
| **4-gram** | Subword | 14,003 | 13.77 | 96,467 | 10.5% | 35.7% | |
|
|
| **5-gram** | Word | 7,318 | 12.84 | 24,542 | 16.3% | 46.7% | |
|
|
| **5-gram** | Subword | 33,559 | 15.03 | 198,894 | 7.1% | 25.2% | |
|
|
|
|
|
### Top 5 N-grams by Size |
|
|
|
|
|
**2-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `ัะตัะฟัะฑะปะธะบะธ ะฐะปัะฐะน` | 1,479 | |
|
|
| 2 | `ั ััะบ` | 1,391 | |
|
|
| 3 | `ะณะพัะฝะพ ะฐะปัะฐะนัะบ` | 1,246 | |
|
|
| 4 | `ะฐะปัะฐะน ัะตัะฟัะฑะปะธะบะฐะฝัาฅ` | 1,220 | |
|
|
| 5 | `ั ะฑะพะถ` | 1,072 | |
|
|
|
|
|
**3-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `ััะปะดัาฅ ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ` | 755 | |
|
|
| 2 | `ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ 15` | 730 | |
|
|
| 3 | `ะฐะปัะฐะนัะบ ะฐั ัะฐ` | 511 | |
|
|
| 4 | `ะณะพัะฝะพ ะฐะปัะฐะนัะบ ะฐั` | 511 | |
|
|
| 5 | `ัะพะฝ ัะฐัะบะฐะฝ ัะตัะปะตัะธ` | 503 | |
|
|
|
|
|
**4-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `ััะปะดัาฅ ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ 15` | 730 | |
|
|
| 2 | `ะณะพัะฝะพ ะฐะปัะฐะนัะบ ะฐั ัะฐ` | 511 | |
|
|
| 3 | `ะฑะพะปะณะพะฝ ััะปะดัาฅ ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ` | 367 | |
|
|
| 4 | `ะฐะนัะฝัาฅ 15 ะบำฑะฝะธะฝะต ัะตัะธัะต` | 365 | |
|
|
| 5 | `ะฐะฐะนัะฝัะฐ ััะปะดัาฅ ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ` | 365 | |
|
|
|
|
|
**5-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `ัะปะธะฐะฝ ะบำฑะฝัะธะทำฑ ะฐะฐะนัะฝัะฐ ััะปะดัาฅ ำฑะปำฑัะณะตะฝ` | 365 | |
|
|
| 2 | `ะบำฑะฝัะธะทำฑ ะฐะฐะนัะฝัะฐ ััะปะดัาฅ ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ` | 365 | |
|
|
| 3 | `ะบำฑะฝะธะฝะต ัะตัะธัะต ะฑะพะปะณะพะฝ ััะปะดัาฅ ำฑะปำฑัะณะตะฝ` | 365 | |
|
|
| 4 | `ัะปะธะฐะฝ ะบำฑะฝัะธะทำฑะฝะธ 13 ะบำฑะฝะณะต ะพะทะพะปะพะฟ` | 365 | |
|
|
| 5 | `ะบำฑะฝัะธะทำฑ ัะปะธะฐะฝ ะบำฑะฝัะธะทำฑะฝะธ 13 ะบำฑะฝะณะต` | 365 | |
|
|
|
|
|
**2-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ ะบ` | 74,208 | |
|
|
| 2 | `, _` | 64,571 | |
|
|
| 3 | `_ ั` | 55,512 | |
|
|
| 4 | `ะฐ _` | 55,147 | |
|
|
| 5 | `าฅ _` | 53,924 | |
|
|
|
|
|
**3-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `ั าฅ _` | 34,158 | |
|
|
| 2 | `ะด ะฐ _` | 16,990 | |
|
|
| 3 | `_ โ _` | 16,847 | |
|
|
| 4 | `ะฝ ั าฅ` | 15,805 | |
|
|
| 5 | `_ ะบ ะฐ` | 15,039 | |
|
|
|
|
|
**4-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `ะฝ ั าฅ _` | 15,207 | |
|
|
| 2 | `ะด ั าฅ _` | 13,173 | |
|
|
| 3 | `_ ะบ ำฑ ะฝ` | 11,135 | |
|
|
| 4 | `ะฐ ะป ั ะฐ` | 9,624 | |
|
|
| 5 | `_ ั ั ะป` | 9,304 | |
|
|
|
|
|
**5-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `ะฐ ะป ั ะฐ ะน` | 8,736 | |
|
|
| 2 | `_ ั ั ะป ะด` | 7,756 | |
|
|
| 3 | `ั ะบ ะธ ะน _` | 7,663 | |
|
|
| 4 | `_ ะฐ ะป ั ะฐ` | 6,748 | |
|
|
| 5 | `ะน ะด ั าฅ _` | 5,904 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Perplexity:** 2-gram (subword) with 413 |
|
|
- **Entropy Trend:** Decreases with larger n-grams (more predictable) |
|
|
- **Coverage:** Top-1000 patterns cover ~25% of corpus |
|
|
- **Recommendation:** 4-gram or 5-gram for best predictive performance |
|
|
|
|
|
--- |
|
|
## 3. Markov Chain Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |
|
|
|---------|---------|-------------|------------|------------------|-----------------|----------------| |
|
|
| **1** | Word | 0.7265 | 1.655 | 4.23 | 64,260 | 27.4% | |
|
|
| **1** | Subword | 1.6376 | 3.112 | 16.04 | 301 | 0.0% | |
|
|
| **2** | Word | 0.1676 | 1.123 | 1.34 | 271,928 | 83.2% | |
|
|
| **2** | Subword | 1.3152 | 2.488 | 8.04 | 4,828 | 0.0% | |
|
|
| **3** | Word | 0.0551 | 1.039 | 1.10 | 364,496 | 94.5% | |
|
|
| **3** | Subword | 0.8837 | 1.845 | 4.16 | 38,825 | 11.6% | |
|
|
| **4** | Word | 0.0265 ๐ | 1.019 | 1.05 | 400,428 | 97.3% | |
|
|
| **4** | Subword | 0.6047 | 1.521 | 2.55 | 161,528 | 39.5% | |
|
|
|
|
|
### Generated Text Samples (Word-based) |
|
|
|
|
|
Below are text samples generated from each word-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `ะปะฐ ำงัะบำง ะบะธะถะธะฝะธาฅ ะฐะดัะฝ ะผะฐัั ัะธััะตะผั ะฝะพ ัััะพะตะฝัะตะผั ะผะตัะทะพะบั ะฒัั ัะฟะธัะตั ะฒะตัะผะฐั
ั ะฟะพะฝัั 90 ะบะผ ัะฐั` |
|
|
2. `ะปะต ัะพะปะดะพัั ัััััะฐ 9 ะบำฑะฝะธะฝะดะต ะผะพัะบะฒะฐะดะฐ ะฒ ะฒ ะปะพะผะพะฝะพัะพะฒะฐ ััะปะดะฐ ะณะฐะฐะณะฐะดะฐ ะฟะตัะตะฟะปัััะธะบ ะฑะธัะธะบัะตั ะฑะตัะตัััะฝะฐั ะณั...` |
|
|
3. `ะฐะปัะฐะน ัะตัะฟัะฑะปะธะบะฐ ั
ะฐะบะฐัะธั ะผะพะฝะณะพะปะธั ะณะพัะฝะพ ะฐะปัะฐะนัะบ ะณะฐะณั ะฝัาฅ ัะฐััะผััะปะดัะบ ะบััััะฐััะฝะฐ ะฐัะบะฐััะปะณะฐะฝ ะพะฝัาฅ ะฐะดัะป...` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `ัะตัะฟัะฑะปะธะบะธ ะฐะปัะฐะน ะพั 3 ะผะฐััะฐ ะณะพะดะฐ n 9 6 ะพ ัะทัะบะฐั
ะฝะฐัะพะดะพะฒ ะฟัะพะถะธะฒะฐััะธั
ะฝะฐ ัะตััะธัะพัะธะธ ัะตัะฟัะฑะปะธะบะธ ะฐะปัะฐะน` |
|
|
2. `ั ััะบ ัะพะฒะตั ะปะต ัะพััะธะน ะพัะฝะธัะพะปะพะณ ััััะบัั ะฐะฝะธะผะฐะปะธัั ะฑั ะบำฑะฝะดะต ะฑะพะถะพะณะพะฝะดะพั ะฐัะฐััะปะฐั 27 ะฐะนะดัาฅ 27 ะบำฑะฝะธ ัะปะธะฐ...` |
|
|
3. `ะณะพัะฝะพ ะฐะปัะฐะนัะบ ะฐะปัะฐะนะดัาฅ ะฑะธัะธะบัะตั ััะณะฐัะฐั ะธะทะด ะฒะพะทั 1 ัะป ะพะฟั ะดะธัะบ cd rom ะฝะฐ ะฐะปั ัะท ะฑ` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `ััะปะดัาฅ ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ 15 ะบำฑะฝะธะฝะตาฅ ะฐะปะฐ ััะปะฐะฐะฝ ะฐะนะดัาฅ 29 ะบำฑะฝะธะฝะดะต ะฐััะธัั ัะพััะธัะฝัาฅ ัะตะฐััะฐะป ะธััะธะปะตัะธะฝะธาฅ ะฑะธ...` |
|
|
2. `ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ 15 ะบำฑะฝะธะฝะตาฅ ะฐะปะฐ ะบะฐะฝะดัะบ ะฐะนะดัาฅ 15 ะบำฑะฝะธ ัะปะธะฐะฝ ะบำฑะฝัะธะทำฑ ะฐะฐะนัะฝัะฐ ััะปะดัาฅ ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ 15 ะบำฑ...` |
|
|
3. `ะฐะปัะฐะนัะบ ะฐั ัะฐ ะปะธัะตัะฐัััะฝะพ ะธะทะดะฐัะตะปััะบะธะน ะดะพะผ ะฐะปััะฝ ััั ัััะดะฐ ะฑะฐะปัะบ ะบะตะทะตะผ ะฐััะฐะณะฐะฝ ะดะฐ ะฑะพะปะทะพ ะบะพััะปั ัะตัะปะต...` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `ััะปะดัาฅ ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ 15 ะบำฑะฝะธะฝะต ัะตัะธัะต ะฑะพะปะณะพะฝ ััะปะดัาฅ ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ 15 ะบำฑะฝะธะฝะต ัะตัะธัะต ะฑะพะปะณะพะฝ ััะปะดัาฅ ำฑ...` |
|
|
2. `ะณะพัะฝะพ ะฐะปัะฐะนัะบ ะฐั ัะฐ ะปะธัะตัะฐัััะฝะพ ะธะทะดะฐัะตะปััะบะธะน ะดะพะผ ะฐะปััะฝ ััั ัะฐะนะดัาฅ ะฑะพะนัะฝะดะฐ ะฐัะบะฐะปะฐัั ะบะพะนั ะปะฐ ะฑะธะนะธะบ ำงะปำง...` |
|
|
3. `ะฑะพะปะณะพะฝ ััะปะดัาฅ ำฑะปำฑัะณะตะฝ ะฐะนัะฝัาฅ 15 ะบำฑะฝะธะฝะตาฅ ะฐะปะฐ ะบำฑำฑะบ ะฐะนะดัาฅ 6 ะบำฑะฝะธ ะณัะธะณะพัะธะฐะฝ ะบำฑะฝัะธะทำฑะดะต ััะปะดัาฅ 360 ะบำฑะฝะธ ะฒะธ...` |
|
|
|
|
|
|
|
|
### Generated Text Samples (Subword-based) |
|
|
|
|
|
Below are text samples generated from each subword-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `_ะณะฐัำฑะปะธยป)_ัะตะบัะธั` |
|
|
2. `ะฐะบะฐะฝะฐะผะธะบะตั_ััั
ะธั
` |
|
|
3. `ััะฐะบะบะปะฐะฝ_ะพะฝะปะฐ_ะฑั` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `_ะบัะป,_ะฑะฐัะฝะพะฒ_ะบัะปะณ` |
|
|
2. `,_29_21,97_ะผะฐะปัะฐะป` |
|
|
3. `_ััััะธัะตัะฟัะฑะปะธะบ_ะฐ` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `ัาฅ_ะบะพะดะพะฝะดะพ_ะธะฝััะฐะฝั` |
|
|
2. `ะดะฐ_ะฟัะฐะฒะพัะปะฐะฒ_ะฑะฐัะบะฐ` |
|
|
3. `_โ_titus_liefs_asb` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `ะฝัาฅ_ะบะฐะฝะดััะฐ_ะฐะณัะฟ_ะฑะฐ` |
|
|
2. `ะดัาฅ_ัะธะทะธะบะฐะฝัาฅ_ำฑำฑัะตะป` |
|
|
3. `_ะบำฑะฝัะธะทำฑะปะต_ะบำฑะฝะธ_ะณัะธ` |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Predictability:** Context-4 (word) with 97.3% predictability |
|
|
- **Branching Factor:** Decreases with context size (more deterministic) |
|
|
- **Memory Trade-off:** Larger contexts require more storage (161,528 contexts) |
|
|
- **Recommendation:** Context-3 or Context-4 for text generation |
|
|
|
|
|
--- |
|
|
## 4. Vocabulary Analysis |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Statistics |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Vocabulary Size | 26,328 | |
|
|
| Total Tokens | 565,164 | |
|
|
| Mean Frequency | 21.47 | |
|
|
| Median Frequency | 3 | |
|
|
| Frequency Std Dev | 124.45 | |
|
|
|
|
|
### Most Common Words |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | ะปะฐ | 6,601 | |
|
|
| 2 | ะปะต | 4,964 | |
|
|
| 3 | ะฐะปัะฐะน | 4,646 | |
|
|
| 4 | ะดะตะฟ | 3,903 | |
|
|
| 5 | ั | 3,881 | |
|
|
| 6 | ััะปะดะฐ | 3,745 | |
|
|
| 7 | ะฐะนะดัาฅ | 3,441 | |
|
|
| 8 | ะฑะพะปะณะพะฝ | 3,230 | |
|
|
| 9 | ะบะผ | 3,151 | |
|
|
| 10 | ัััั | 3,140 | |
|
|
|
|
|
### Least Common Words (from vocabulary) |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | ัะฐัะบะฐะดัะปะฐัะดั | 2 | |
|
|
| 2 | ัััะทะฐะปะฐะฝะฐั | 2 | |
|
|
| 3 | ัะทะฐะฝัั | 2 | |
|
|
| 4 | ััะตััะตะนะดะต | 2 | |
|
|
| 5 | ะผะตัะตะผะตัะธะบะต | 2 | |
|
|
| 6 | ัะตัะบะธะปะดะตัะธ | 2 | |
|
|
| 7 | ะบำงะผะฟำฑัะตัะปะธะบ | 2 | |
|
|
| 8 | ัะพะพัะพั | 2 | |
|
|
| 9 | ะบะพัะปัะบ | 2 | |
|
|
| 10 | ะฟัะพะณัะฐะผะฐะปะฐัั | 2 | |
|
|
|
|
|
### Zipf's Law Analysis |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Zipf Coefficient | 1.1627 | |
|
|
| Rยฒ (Goodness of Fit) | 0.985919 | |
|
|
| Adherence Quality | **excellent** | |
|
|
|
|
|
### Coverage Analysis |
|
|
|
|
|
| Top N Words | Coverage | |
|
|
|-------------|----------| |
|
|
| Top 100 | 27.1% | |
|
|
| Top 1,000 | 65.7% | |
|
|
| Top 5,000 | 85.9% | |
|
|
| Top 10,000 | 92.4% | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Zipf Compliance:** Rยฒ=0.9859 indicates excellent adherence to Zipf's law |
|
|
- **High Frequency Dominance:** Top 100 words cover 27.1% of corpus |
|
|
- **Long Tail:** 16,328 words needed for remaining 7.6% coverage |
|
|
|
|
|
--- |
|
|
## 5. Word Embeddings Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.1 Cross-Lingual Alignment |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.2 Model Comparison |
|
|
|
|
|
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |
|
|
|-------|-----------|----------|------------------|---------------|----------------| |
|
|
| **mono_32d** | 32 | 0.8419 | 0.3607 | N/A | N/A | |
|
|
| **mono_64d** | 64 | 0.7375 | 0.3054 | N/A | N/A | |
|
|
| **mono_128d** | 128 | 0.3603 | 0.2810 | N/A | N/A | |
|
|
| **aligned_32d** | 32 | 0.8419 ๐ | 0.3554 | 0.0260 | 0.1460 | |
|
|
| **aligned_64d** | 64 | 0.7375 | 0.2999 | 0.0660 | 0.2980 | |
|
|
| **aligned_128d** | 128 | 0.3603 | 0.2823 | 0.1580 | 0.4340 | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Isotropy:** aligned_32d with 0.8419 (more uniform distribution) |
|
|
- **Semantic Density:** Average pairwise similarity of 0.3141. Lower values indicate better semantic separation. |
|
|
- **Alignment Quality:** Aligned models achieve up to 15.8% R@1 in cross-lingual retrieval. |
|
|
- **Recommendation:** 128d aligned for best cross-lingual performance |
|
|
|
|
|
--- |
|
|
## 6. Morphological Analysis (Experimental) |
|
|
|
|
|
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. |
|
|
|
|
|
### 6.1 Productivity & Complexity |
|
|
|
|
|
| Metric | Value | Interpretation | Recommendation | |
|
|
|--------|-------|----------------|----------------| |
|
|
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis | |
|
|
| Idiomaticity Gap | **0.854** | High formulaic/idiomatic content | - | |
|
|
|
|
|
### 6.2 Affix Inventory (Productive Units) |
|
|
|
|
|
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. |
|
|
|
|
|
#### Productive Prefixes |
|
|
| Prefix | Examples | |
|
|
|--------|----------| |
|
|
| `-ะบะฐ` | ะบะฐะปัะบัััะฐ, ะบะฐะปะฑะฐ, ะบะฐััะบะฐะฒะฐ | |
|
|
| `-ะบะพ` | ะบะพะฝัั, ะบะพะทะตััะบะพะฒะฐ, ะบะพะถะพะฝะดะพะฟ | |
|
|
|
|
|
#### Productive Suffixes |
|
|
| Suffix | Examples | |
|
|
|--------|----------| |
|
|
| `-ัาฅ` | ัะธะปะฐัะผะพะฝะธัะฝัาฅ, ััะฐะฝัะฟะพััััาฅ, ะฑัะธัะฐะฝะธัะฝัาฅ | |
|
|
| `-ะธะน` | ะฑะตะปะพััััะบะธะน, ะผะฐะบะฐััะตะฒัะบะธะน, ะธัะตััะบะธะน | |
|
|
| `-ะบะธะน` | ะฑะตะปะพััััะบะธะน, ะผะฐะบะฐััะตะฒัะบะธะน, ะธัะตััะบะธะน | |
|
|
| `-ัะบะธะน` | ะฑะตะปะพััััะบะธะน, ะผะฐะบะฐััะตะฒัะบะธะน, ะธัะตััะบะธะน | |
|
|
| `-ะฝัาฅ` | ัะธะปะฐัะผะพะฝะธัะฝัาฅ, ะฑัะธัะฐะฝะธัะฝัาฅ, ะฝะฐัะฐะปะบะฐะฝัาฅ | |
|
|
| `-ะธาฅ` | ัะตะตะทะตะทะธะฝะธาฅ, ะธะทำฑะทะธะฝะธาฅ, ำฑัะตะฝัะธะบัะตัะดะธาฅ | |
|
|
| `-ะดะฐ` | ะพัะดัะฝะดะฐ, ัะพะฒั
ะพะทัะฝะดะฐ, ัะฐะดัะดะฐ | |
|
|
| `-ัะน` | ะณะพััะดะฐัััะฒะตะฝะฝัะน, ะผัะทะตะนะฝัะน, ััะฟะปัะน | |
|
|
|
|
|
### 6.3 Bound Stems (Lexical Roots) |
|
|
|
|
|
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. |
|
|
|
|
|
| Stem | Cohesion | Substitutability | Examples | |
|
|
|------|----------|------------------|----------| |
|
|
| `ัะบะธะน` | 2.17x | 43 contexts | ะพะผัะบะธะน, ะพะบัะบะธะน, ัััะบะธะน | |
|
|
| `ัะฝะดะฐ` | 1.53x | 51 contexts | ะผัะฝะดะฐ, ะฐะนัะฝะดะฐ, ััะฝะดะฐั | |
|
|
| `ัะฝัาฅ` | 1.68x | 30 contexts | ะผัะฝัาฅ, ะทัะฝัาฅ, ัะณัะฝัาฅ | |
|
|
| `ะปัะฐะน` | 1.85x | 21 contexts | ะฐะปัะฐะน, ััะปัะฐะน, ะฐะปัะฐะนะดั | |
|
|
| `ะปะณะพะฝ` | 2.21x | 12 contexts | ัะพะปะณะพะฝ, ะฑะพะปะณะพะฝ, ะฑะพะปะณะพะฝะผ | |
|
|
| `ะปะณะฐะฝ` | 1.70x | 23 contexts | ะฐะปะณะฐะฝ, ะบะฐะปะณะฐะฝ, ัะฐะปะณะฐะฝ | |
|
|
| `ะพััะธ` | 2.03x | 13 contexts | ัะพััะธั, ัะพััะธั, ัะพััะธะธ | |
|
|
| `ะฐะฝัาฅ` | 1.67x | 23 contexts | ะพะบะฐะฝัาฅ, ััะฐะฝัาฅ, ััะฐะฝัาฅ | |
|
|
| `ะพะปะณะพ` | 1.66x | 22 contexts | ะบะพะปะณะพ, ะฒะพะปะณะพ, ะณะพะปะณะพ | |
|
|
| `ะฐะปัะฐ` | 1.49x | 26 contexts | ะฐะปัะฐะน, ะฐะปัะฐะฝ, ะฐะปัะฐะผ | |
|
|
| `ััะปะด` | 1.77x | 15 contexts | ััะปะดะฐ, ััะปะดั, ััะปะดัะฝ | |
|
|
| `ัะปะดะฐ` | 1.63x | 19 contexts | ััะปะดะฐ, ะดัะปะดะฐ, ััะปะดะฐ | |
|
|
|
|
|
### 6.4 Affix Compatibility (Co-occurrence) |
|
|
|
|
|
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. |
|
|
|
|
|
| Prefix | Suffix | Frequency | Examples | |
|
|
|--------|--------|-----------|----------| |
|
|
| `-ะบะฐ` | `-ัาฅ` | 21 words | ะบะฐะทะฐะบััะฐะฝะฝัาฅ, ะบะฐะนััะปัะบััาฅ | |
|
|
| `-ะบะพ` | `-ัาฅ` | 20 words | ะบะพะฝััะธัััะธัะฝัาฅ, ะบะพะฝะบััััะฐัะดัาฅ | |
|
|
| `-ะบะฐ` | `-ะธะน` | 14 words | ะบะฐะดะตััะบะธะน, ะบะฐััะบะธะน | |
|
|
| `-ะบะพ` | `-ัะน` | 13 words | ะบะพะฝัะฐะปัะธะฝะณะพะฒัะน, ะบะพะผะฐะฝะดะฝัะน | |
|
|
| `-ะบะฐ` | `-ะฝัาฅ` | 11 words | ะบะฐะทะฐะบััะฐะฝะฝัาฅ, ะบะฐะฝะฐะดะฐะฝัาฅ | |
|
|
| `-ะบะพ` | `-ะฝัาฅ` | 11 words | ะบะพะฝััะธัััะธัะฝัาฅ, ะบะพะปั
ะพะทัะฝัาฅ | |
|
|
| `-ะบะพ` | `-ะธะน` | 10 words | ะบะพะผะผะตะฝัะฐัะธะน, ะบะพะฒะฐะปะตะฒัะบะธะน | |
|
|
| `-ะบะฐ` | `-ะบะธะน` | 10 words | ะบะฐะดะตััะบะธะน, ะบะฐััะบะธะน | |
|
|
| `-ะบะฐ` | `-ัะบะธะน` | 10 words | ะบะฐะดะตััะบะธะน, ะบะฐััะบะธะน | |
|
|
| `-ะบะพ` | `-ะดะฐ` | 9 words | ะบะพัะผะตัะพะปะพะณะธัะดะฐ, ะบะพััะดะฐ | |
|
|
|
|
|
### 6.5 Recursive Morpheme Segmentation |
|
|
|
|
|
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). |
|
|
|
|
|
| Word | Suggested Split | Confidence | Stem | |
|
|
|------|-----------------|------------|------| |
|
|
| ะฟะปะฐะฝะตัะฐะปะฐััะฝะดะฐ | **`ะฟะปะฐะฝะตัะฐะปะฐััะฝ-ะดะฐ`** | 4.5 | `ะฟะปะฐะฝะตัะฐะปะฐััะฝ` | |
|
|
| ะฐะบััััะฝัาฅ | **`ะฐะบัััั-ะฝัาฅ`** | 4.5 | `ะฐะบัััั` | |
|
|
| ะฟะพะบัะพะฒัะบะธะน | **`ะฟะพะบัะพะฒ-ัะบะธะน`** | 4.5 | `ะฟะพะบัะพะฒ` | |
|
|
| ะธัะบััััะฒะพะฝัาฅ | **`ะธัะบััััะฒะพ-ะฝัาฅ`** | 4.5 | `ะธัะบััััะฒะพ` | |
|
|
| ะดัะผะฐะทัะฝัาฅ | **`ะดัะผะฐะทั-ะฝัาฅ`** | 4.5 | `ะดัะผะฐะทั` | |
|
|
| ะผะตะดะธัะธะฝะฐะดะฐ | **`ะผะตะดะธัะธะฝะฐ-ะดะฐ`** | 4.5 | `ะผะตะดะธัะธะฝะฐ` | |
|
|
| ะฑะฐะปะดะฐััะฝัาฅ | **`ะฑะฐะปะดะฐัั-ะฝัาฅ`** | 4.5 | `ะฑะฐะปะดะฐัั` | |
|
|
| ะฟะพัััะณะฐะปะธัะดะฐ | **`ะฟะพัััะณะฐะปะธั-ะดะฐ`** | 4.5 | `ะฟะพัััะณะฐะปะธั` | |
|
|
| ะฟัะพะณัะฐะผะผะฐะดะฐ | **`ะฟัะพะณัะฐะผะผะฐ-ะดะฐ`** | 4.5 | `ะฟัะพะณัะฐะผะผะฐ` | |
|
|
| ะฐะนะผะฐะณัะฝัาฅ | **`ะฐะนะผะฐะณั-ะฝัาฅ`** | 4.5 | `ะฐะนะผะฐะณั` | |
|
|
| ะฐะบะฐะดะตะผะธัะดะฐ | **`ะฐะบะฐะดะตะผะธั-ะดะฐ`** | 4.5 | `ะฐะบะฐะดะตะผะธั` | |
|
|
| ะฐะฒะธะฐัะธัะฝัาฅ | **`ะฐะฒะธะฐัะธั-ะฝัาฅ`** | 4.5 | `ะฐะฒะธะฐัะธั` | |
|
|
| ัะพัะปะฐะฝะดัะบะธะน | **`ัะพัะปะฐะฝะด-ัะบะธะน`** | 4.5 | `ัะพัะปะฐะฝะด` | |
|
|
| ะบะธัะณะธะทะธัะฝัาฅ | **`ะบะธัะณะธะทะธั-ะฝัาฅ`** | 4.5 | `ะบะธัะณะธะทะธั` | |
|
|
| ัะตะณัะตััะธัะฝัาฅ | **`ัะตะณัะตััะธั-ะฝัาฅ`** | 4.5 | `ัะตะณัะตััะธั` | |
|
|
|
|
|
### 6.6 Linguistic Interpretation |
|
|
|
|
|
> **Automated Insight:** |
|
|
The language Southern Altai shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. |
|
|
|
|
|
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. |
|
|
|
|
|
--- |
|
|
## 7. Summary & Recommendations |
|
|
|
|
|
 |
|
|
|
|
|
### Production Recommendations |
|
|
|
|
|
| Component | Recommended | Rationale | |
|
|
|-----------|-------------|-----------| |
|
|
| Tokenizer | **16k BPE** | Best compression (3.69x) | |
|
|
| N-gram | **2-gram** | Lowest perplexity (413) | |
|
|
| Markov | **Context-4** | Highest predictability (97.3%) | |
|
|
| Embeddings | **100d** | Balanced semantic capture and isotropy | |
|
|
|
|
|
|
|
|
--- |
|
|
## Appendix: Metrics Glossary & Interpretation Guide |
|
|
|
|
|
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. |
|
|
|
|
|
### Tokenizer Metrics |
|
|
|
|
|
**Compression Ratio** |
|
|
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. |
|
|
> |
|
|
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. |
|
|
> |
|
|
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. |
|
|
|
|
|
**Average Token Length (Fertility)** |
|
|
> *Definition:* Mean number of characters per token produced by the tokenizer. |
|
|
> |
|
|
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. |
|
|
> |
|
|
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. |
|
|
|
|
|
**Unknown Token Rate (OOV Rate)** |
|
|
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. |
|
|
> |
|
|
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. |
|
|
> |
|
|
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. |
|
|
|
|
|
### N-gram Model Metrics |
|
|
|
|
|
**Perplexity** |
|
|
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. |
|
|
> |
|
|
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. |
|
|
> |
|
|
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. |
|
|
|
|
|
**Entropy** |
|
|
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. |
|
|
> |
|
|
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. |
|
|
> |
|
|
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. |
|
|
|
|
|
**Coverage (Top-K)** |
|
|
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. |
|
|
> |
|
|
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. |
|
|
> |
|
|
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. |
|
|
|
|
|
### Markov Chain Metrics |
|
|
|
|
|
**Average Entropy** |
|
|
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. |
|
|
> |
|
|
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). |
|
|
> |
|
|
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. |
|
|
|
|
|
**Branching Factor** |
|
|
> *Definition:* Average number of unique next tokens observed for each context. |
|
|
> |
|
|
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). |
|
|
> |
|
|
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. |
|
|
|
|
|
**Predictability** |
|
|
> *Definition:* Derived metric: (1 - normalized_entropy) ร 100%. Indicates how deterministic the model's predictions are. |
|
|
> |
|
|
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. |
|
|
> |
|
|
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. |
|
|
|
|
|
### Vocabulary & Zipf's Law Metrics |
|
|
|
|
|
**Zipf's Coefficient** |
|
|
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. |
|
|
> |
|
|
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. |
|
|
> |
|
|
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. |
|
|
|
|
|
**Rยฒ (Coefficient of Determination)** |
|
|
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. |
|
|
> |
|
|
> *Intuition:* Rยฒ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. |
|
|
> |
|
|
> *What to seek:* Rยฒ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. |
|
|
|
|
|
**Vocabulary Coverage** |
|
|
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. |
|
|
> |
|
|
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. |
|
|
> |
|
|
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. |
|
|
|
|
|
### Word Embedding Metrics |
|
|
|
|
|
**Isotropy** |
|
|
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. |
|
|
> |
|
|
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. |
|
|
> |
|
|
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. |
|
|
|
|
|
**Average Norm** |
|
|
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. |
|
|
> |
|
|
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. |
|
|
> |
|
|
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). |
|
|
|
|
|
**Cosine Similarity** |
|
|
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). |
|
|
> |
|
|
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. |
|
|
> |
|
|
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. |
|
|
|
|
|
**t-SNE Visualization** |
|
|
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. |
|
|
> |
|
|
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. |
|
|
> |
|
|
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. |
|
|
|
|
|
### General Interpretation Guidelines |
|
|
|
|
|
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). |
|
|
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). |
|
|
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. |
|
|
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. |
|
|
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. |
|
|
|
|
|
|
|
|
### Visualizations Index |
|
|
|
|
|
| Visualization | Description | |
|
|
|---------------|-------------| |
|
|
| Tokenizer Compression | Compression ratios by vocabulary size | |
|
|
| Tokenizer Fertility | Average token length by vocabulary | |
|
|
| Tokenizer OOV | Unknown token rates | |
|
|
| Tokenizer Total Tokens | Total tokens by vocabulary | |
|
|
| N-gram Perplexity | Perplexity by n-gram size | |
|
|
| N-gram Entropy | Entropy by n-gram size | |
|
|
| N-gram Coverage | Top pattern coverage | |
|
|
| N-gram Unique | Unique n-gram counts | |
|
|
| Markov Entropy | Entropy by context size | |
|
|
| Markov Branching | Branching factor by context | |
|
|
| Markov Contexts | Unique context counts | |
|
|
| Zipf's Law | Frequency-rank distribution with fit | |
|
|
| Vocab Frequency | Word frequency distribution | |
|
|
| Top 20 Words | Most frequent words | |
|
|
| Vocab Coverage | Cumulative coverage curve | |
|
|
| Embedding Isotropy | Vector space uniformity | |
|
|
| Embedding Norms | Vector magnitude distribution | |
|
|
| Embedding Similarity | Word similarity heatmap | |
|
|
| Nearest Neighbors | Similar words for key terms | |
|
|
| t-SNE Words | 2D word embedding visualization | |
|
|
| t-SNE Sentences | 2D sentence embedding visualization | |
|
|
| Position Encoding | Encoding method comparison | |
|
|
| Model Sizes | Storage requirements | |
|
|
| Performance Dashboard | Comprehensive performance overview | |
|
|
|
|
|
--- |
|
|
## About This Project |
|
|
|
|
|
### Data Source |
|
|
|
|
|
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. |
|
|
|
|
|
### Project |
|
|
|
|
|
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. |
|
|
|
|
|
### Maintainer |
|
|
|
|
|
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) |
|
|
|
|
|
### Citation |
|
|
|
|
|
If you use these models in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{wikilangs2025, |
|
|
author = {Kamali, Omar}, |
|
|
title = {Wikilangs: Open NLP Models for Wikipedia Languages}, |
|
|
year = {2025}, |
|
|
doi = {10.5281/zenodo.18073153}, |
|
|
publisher = {Zenodo}, |
|
|
url = {https://huggingface.co/wikilangs} |
|
|
institution = {Omneity Labs} |
|
|
} |
|
|
``` |
|
|
|
|
|
### License |
|
|
|
|
|
MIT License - Free for academic and commercial use. |
|
|
|
|
|
### Links |
|
|
|
|
|
- ๐ Website: [wikilangs.org](https://wikilangs.org) |
|
|
- ๐ค Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) |
|
|
- ๐ Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) |
|
|
- ๐ค Author: [Omar Kamali](https://huggingface.co/omarkamali) |
|
|
- ๐ค Sponsor: [Featherless AI](https://featherless.ai) |
|
|
--- |
|
|
*Generated by Wikilangs Models Pipeline* |
|
|
|
|
|
*Report Date: 2026-01-03 16:17:03* |
|
|
|