alt / README.md
omarkamali's picture
Upload all models and assets for alt (latest)
cda4232 verified
---
language: alt
language_name: Southern Altai
language_family: turkic_siberian
tags:
- wikilangs
- nlp
- tokenizer
- embeddings
- n-gram
- markov
- wikipedia
- feature-extraction
- sentence-similarity
- tokenization
- n-grams
- markov-chain
- text-mining
- fasttext
- babelvec
- vocabulous
- vocabulary
- monolingual
- family-turkic_siberian
license: mit
library_name: wikilangs
pipeline_tag: text-generation
datasets:
- omarkamali/wikipedia-monthly
dataset_info:
name: wikipedia-monthly
description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
- name: best_compression_ratio
type: compression
value: 3.686
- name: best_isotropy
type: isotropy
value: 0.8419
- name: vocabulary_size
type: vocab
value: 0
generated: 2026-01-03
---
# Southern Altai - Wikilangs Models
## Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Southern Altai** Wikipedia data.
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
## ๐Ÿ“‹ Repository Contents
### Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
![Performance Dashboard](visualizations/performance_dashboard.png)
### Analysis and Evaluation
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
- [7. Summary & Recommendations](#7-summary--recommendations)
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
- [Visualizations Index](#visualizations-index)
---
## 1. Tokenizer Evaluation
![Tokenizer Compression](visualizations/tokenizer_compression.png)
![Tokenizer Fertility](visualizations/tokenizer_fertility.png)
![Tokenizer OOV](visualizations/tokenizer_oov.png)
![Total Tokens](visualizations/tokenizer_total_tokens.png)
### Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|------------|-------------|---------------|----------|--------------|
| **8k** | 3.486x | 3.49 | 0.3992% | 972,913 |
| **16k** | 3.686x ๐Ÿ† | 3.69 | 0.4221% | 920,240 |
### Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
**Sample 1:** `ะžาฅะฝั‹ัƒั‚ ะบะพัˆัƒัƒะฝ () โ€” ำงะฒำงั€ ะผะพาฅะพะปะดั‹าฅ ะบะพัˆัƒัƒะฝ. ะญั‚ะธะผะพะปะพะณะธัะทั‹ ะžาฅะฝั‹ัƒั‚ โ€” (ะบะฐะปะบะฐ ะผะพาฅะพะปะดะพะฟ ะพ...`
| Vocab | Tokens | Count |
|-------|--------|-------|
| 8k | `โ–ะพาฅะฝั‹ัƒั‚ โ–ะบะพัˆัƒัƒะฝ โ–() โ–โ€” โ–ำงะฒำงั€ โ–ะผะพาฅะพะปะดั‹าฅ โ–ะบะพัˆัƒัƒะฝ . โ–ัั‚ะธะผะพะปะพะณะธัะทั‹ โ–ะพาฅะฝั‹ัƒั‚ ... (+27 more)` | 37 |
| 16k | `โ–ะพาฅะฝั‹ัƒั‚ โ–ะบะพัˆัƒัƒะฝ โ–() โ–โ€” โ–ำงะฒำงั€ โ–ะผะพาฅะพะปะดั‹าฅ โ–ะบะพัˆัƒัƒะฝ . โ–ัั‚ะธะผะพะปะพะณะธัะทั‹ โ–ะพาฅะฝั‹ัƒั‚ ... (+25 more)` | 35 |
**Sample 2:** `ะญัะบะธ ะงะตั‡ะบะฐะฑ (, ) โ€” ั˜ัƒั€ั‚ ะ ะพััะธัะดะฐ ะขะฐั‚ะฐั€ัั‚ะฐะฝ ะ ะตัะฟัƒะฑะปะธะบะฐะฝั‹าฅ ะšะฐะนะฑั‹ั‡ ะฐะนะผะฐะณั‹ะฝะดะฐ ะบะธั€ะตั‚....`
| Vocab | Tokens | Count |
|-------|--------|-------|
| 8k | `โ–ััะบะธ โ–ั‡ะต ั‡ ะบะฐ ะฑ โ–(, โ–) โ–โ€” โ–ั˜ัƒั€ั‚ โ–ั€ะพััะธัะดะฐ ... (+12 more)` | 22 |
| 16k | `โ–ััะบะธ โ–ั‡ะตั‡ะบะฐะฑ โ–(, โ–) โ–โ€” โ–ั˜ัƒั€ั‚ โ–ั€ะพััะธัะดะฐ โ–ั‚ะฐั‚ะฐั€ัั‚ะฐะฝ โ–ั€ะตัะฟัƒะฑะปะธะบะฐะฝั‹าฅ โ–ะบะฐะนะฑั‹ั‡ ... (+7 more)` | 17 |
**Sample 3:** `ะขะฐะฝะบ - ั‚ะตะผะธั€ะปะต ั˜ะฐะฑั‹ะปะณะฐะฝ ั‚ะตะฑะธะฝะณะธัˆั‚ะตั€ะปำฑ ั˜ัƒัƒั‡ั‹ะป ะผะฐัˆะธะฝะฐ.`
| Vocab | Tokens | Count |
|-------|--------|-------|
| 8k | `โ–ั‚ะฐะฝะบ โ–- โ–ั‚ะตะผะธั€ ะปะต โ–ั˜ะฐ ะฑ ั‹ะปะณะฐะฝ โ–ั‚ะตะฑะธะฝ ะณะธ ัˆ ... (+6 more)` | 16 |
| 16k | `โ–ั‚ะฐะฝะบ โ–- โ–ั‚ะตะผะธั€ะปะต โ–ั˜ะฐะฑั‹ะปะณะฐะฝ โ–ั‚ะตะฑะธะฝะณะธัˆั‚ะตั€ะปำฑ โ–ั˜ัƒัƒั‡ั‹ะป โ–ะผะฐัˆะธะฝะฐ .` | 8 |
### Key Findings
- **Best Compression:** 16k achieves 3.686x compression
- **Lowest UNK Rate:** 8k with 0.3992% unknown tokens
- **Trade-off:** Larger vocabularies improve compression but increase model size
- **Recommendation:** 32k vocabulary provides optimal balance for production use
---
## 2. N-gram Model Evaluation
![N-gram Perplexity](visualizations/ngram_perplexity.png)
![N-gram Unique](visualizations/ngram_unique.png)
![N-gram Coverage](visualizations/ngram_coverage.png)
### Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|--------|---------|------------|---------|----------------|------------------|-------------------|
| **2-gram** | Word | 4,423 | 12.11 | 11,976 | 16.5% | 55.6% |
| **2-gram** | Subword | 413 ๐Ÿ† | 8.69 | 2,708 | 55.2% | 98.2% |
| **3-gram** | Word | 5,471 | 12.42 | 16,254 | 15.6% | 52.1% |
| **3-gram** | Subword | 3,292 | 11.68 | 22,428 | 19.5% | 62.9% |
| **4-gram** | Word | 8,010 | 12.97 | 27,702 | 15.3% | 46.3% |
| **4-gram** | Subword | 14,003 | 13.77 | 96,467 | 10.5% | 35.7% |
| **5-gram** | Word | 7,318 | 12.84 | 24,542 | 16.3% | 46.7% |
| **5-gram** | Subword | 33,559 | 15.03 | 198,894 | 7.1% | 25.2% |
### Top 5 N-grams by Size
**2-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `ั€ะตัะฟัƒะฑะปะธะบะธ ะฐะปั‚ะฐะน` | 1,479 |
| 2 | `ั˜ ั‡ั‹ะบ` | 1,391 |
| 3 | `ะณะพั€ะฝะพ ะฐะปั‚ะฐะนัะบ` | 1,246 |
| 4 | `ะฐะปั‚ะฐะน ั€ะตัะฟัƒะฑะปะธะบะฐะฝั‹าฅ` | 1,220 |
| 5 | `ั˜ ะฑะพะถ` | 1,072 |
**3-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ` | 755 |
| 2 | `ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ 15` | 730 |
| 3 | `ะฐะปั‚ะฐะนัะบ ะฐัƒ ั€ะฐ` | 511 |
| 4 | `ะณะพั€ะฝะพ ะฐะปั‚ะฐะนัะบ ะฐัƒ` | 511 |
| 5 | `ั˜ะพะฝ ั˜ะฐั‚ะบะฐะฝ ั˜ะตั€ะปะตั€ะธ` | 503 |
**4-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ 15` | 730 |
| 2 | `ะณะพั€ะฝะพ ะฐะปั‚ะฐะนัะบ ะฐัƒ ั€ะฐ` | 511 |
| 3 | `ะฑะพะปะณะพะฝ ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ` | 367 |
| 4 | `ะฐะนั‹ะฝั‹าฅ 15 ะบำฑะฝะธะฝะต ั˜ะตั‚ะธั€ะต` | 365 |
| 5 | `ะฐะฐะนั‹ะฝั‡ะฐ ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ` | 365 |
**5-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `ัŽะปะธะฐะฝ ะบำฑะฝั‚ะธะทำฑ ะฐะฐะนั‹ะฝั‡ะฐ ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ` | 365 |
| 2 | `ะบำฑะฝั‚ะธะทำฑ ะฐะฐะนั‹ะฝั‡ะฐ ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ` | 365 |
| 3 | `ะบำฑะฝะธะฝะต ั˜ะตั‚ะธั€ะต ะฑะพะปะณะพะฝ ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ` | 365 |
| 4 | `ัŽะปะธะฐะฝ ะบำฑะฝั‚ะธะทำฑะฝะธ 13 ะบำฑะฝะณะต ะพะทะพะปะพะฟ` | 365 |
| 5 | `ะบำฑะฝั‚ะธะทำฑ ัŽะปะธะฐะฝ ะบำฑะฝั‚ะธะทำฑะฝะธ 13 ะบำฑะฝะณะต` | 365 |
**2-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `_ ะบ` | 74,208 |
| 2 | `, _` | 64,571 |
| 3 | `_ ั˜` | 55,512 |
| 4 | `ะฐ _` | 55,147 |
| 5 | `าฅ _` | 53,924 |
**3-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `ั‹ าฅ _` | 34,158 |
| 2 | `ะด ะฐ _` | 16,990 |
| 3 | `_ โ€” _` | 16,847 |
| 4 | `ะฝ ั‹ าฅ` | 15,805 |
| 5 | `_ ะบ ะฐ` | 15,039 |
**4-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `ะฝ ั‹ าฅ _` | 15,207 |
| 2 | `ะด ั‹ าฅ _` | 13,173 |
| 3 | `_ ะบ ำฑ ะฝ` | 11,135 |
| 4 | `ะฐ ะป ั‚ ะฐ` | 9,624 |
| 5 | `_ ั˜ ั‹ ะป` | 9,304 |
**5-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `ะฐ ะป ั‚ ะฐ ะน` | 8,736 |
| 2 | `_ ั˜ ั‹ ะป ะด` | 7,756 |
| 3 | `ั ะบ ะธ ะน _` | 7,663 |
| 4 | `_ ะฐ ะป ั‚ ะฐ` | 6,748 |
| 5 | `ะน ะด ั‹ าฅ _` | 5,904 |
### Key Findings
- **Best Perplexity:** 2-gram (subword) with 413
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
- **Coverage:** Top-1000 patterns cover ~25% of corpus
- **Recommendation:** 4-gram or 5-gram for best predictive performance
---
## 3. Markov Chain Evaluation
![Markov Entropy](visualizations/markov_entropy.png)
![Markov Contexts](visualizations/markov_contexts.png)
![Markov Branching](visualizations/markov_branching.png)
### Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
| **1** | Word | 0.7265 | 1.655 | 4.23 | 64,260 | 27.4% |
| **1** | Subword | 1.6376 | 3.112 | 16.04 | 301 | 0.0% |
| **2** | Word | 0.1676 | 1.123 | 1.34 | 271,928 | 83.2% |
| **2** | Subword | 1.3152 | 2.488 | 8.04 | 4,828 | 0.0% |
| **3** | Word | 0.0551 | 1.039 | 1.10 | 364,496 | 94.5% |
| **3** | Subword | 0.8837 | 1.845 | 4.16 | 38,825 | 11.6% |
| **4** | Word | 0.0265 ๐Ÿ† | 1.019 | 1.05 | 400,428 | 97.3% |
| **4** | Subword | 0.6047 | 1.521 | 2.55 | 161,528 | 39.5% |
### Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
**Context Size 1:**
1. `ะปะฐ ำงัะบำง ะบะธะถะธะฝะธาฅ ะฐะดั‹ะฝ ะผะฐัั ัะธัั‚ะตะผั‹ ะฝะพ ัั‚ั€ะพะตะฝั–ะตะผัŠ ะผะตั€ะทะพะบัŠ ะฒัั‘ ัะฟะธัˆะตั‚ ะฒะตั€ะผะฐั…ั‚ ะฟะพะฝั‘ั 90 ะบะผ ั˜ะฐัˆ`
2. `ะปะต ั˜ะพะปะดะพั€ั‹ ั˜ัƒั€ั‚ั‚ะฐ 9 ะบำฑะฝะธะฝะดะต ะผะพัะบะฒะฐะดะฐ ะฒ ะฒ ะปะพะผะพะฝะพัะพะฒะฐ ั˜ั‹ะปะดะฐ ะณะฐะฐะณะฐะดะฐ ะฟะตั€ะตะฟะปั‘ั‚ั‡ะธะบ ะฑะธั‡ะธะบั‚ะตั€ ะฑะตั€ะตัั‚ัะฝะฐั ะณั€...`
3. `ะฐะปั‚ะฐะน ั€ะตัะฟัƒะฑะปะธะบะฐ ั…ะฐะบะฐัะธั ะผะพะฝะณะพะปะธั ะณะพั€ะฝะพ ะฐะปั‚ะฐะนัะบ ะณะฐะณัƒ ะฝั‹าฅ ั˜ะฐั€ั‹ะผั˜ั‹ะปะดั‹ะบ ะบัƒั€ัั‚ะฐั€ั‹ะฝะฐ ะฐั‚ะบะฐั€ั‹ะปะณะฐะฝ ะพะฝั‹าฅ ะฐะดั‹ะป...`
**Context Size 2:**
1. `ั€ะตัะฟัƒะฑะปะธะบะธ ะฐะปั‚ะฐะน ะพั‚ 3 ะผะฐั€ั‚ะฐ ะณะพะดะฐ n 9 6 ะพ ัะทั‹ะบะฐั… ะฝะฐั€ะพะดะพะฒ ะฟั€ะพะถะธะฒะฐัŽั‰ะธั… ะฝะฐ ั‚ะตั€ั€ะธั‚ะพั€ะธะธ ั€ะตัะฟัƒะฑะปะธะบะธ ะฐะปั‚ะฐะน`
2. `ั˜ ั‡ั‹ะบ ัะพะฒะตั‚ ะปะต ั€ะพััะธะน ะพั€ะฝะธั‚ะพะปะพะณ ั˜ัƒั€ัƒะบั‡ั‹ ะฐะฝะธะผะฐะปะธัั‚ ะฑัƒ ะบำฑะฝะดะต ะฑะพะถะพะณะพะฝะดะพั€ ะฐั˜ะฐั€ัƒะปะฐั€ 27 ะฐะนะดั‹าฅ 27 ะบำฑะฝะธ ัŽะปะธะฐ...`
3. `ะณะพั€ะฝะพ ะฐะปั‚ะฐะนัะบ ะฐะปั‚ะฐะนะดั‹าฅ ะฑะธั‡ะธะบั‚ะตั€ ั‡ั‹ะณะฐั€ะฐั€ ะธะทะด ะฒะพะทั‹ 1 ัะป ะพะฟั‚ ะดะธัะบ cd rom ะฝะฐ ะฐะปั‚ ัะท ะฑ`
**Context Size 3:**
1. `ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ 15 ะบำฑะฝะธะฝะตาฅ ะฐะปะฐ ั‚ัƒะปะฐะฐะฝ ะฐะนะดั‹าฅ 29 ะบำฑะฝะธะฝะดะต ะฐั€ั‚ะธัั‚ ั€ะพััะธัะฝั‹าฅ ั‚ะตะฐั‚ั€ะฐะป ะธัˆั‡ะธะปะตั€ะธะฝะธาฅ ะฑะธ...`
2. `ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ 15 ะบำฑะฝะธะฝะตาฅ ะฐะปะฐ ะบะฐะฝะดั‹ะบ ะฐะนะดั‹าฅ 15 ะบำฑะฝะธ ัŽะปะธะฐะฝ ะบำฑะฝั‚ะธะทำฑ ะฐะฐะนั‹ะฝั‡ะฐ ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ 15 ะบำฑ...`
3. `ะฐะปั‚ะฐะนัะบ ะฐัƒ ั€ะฐ ะปะธั‚ะตั€ะฐั‚ัƒั€ะฝะพ ะธะทะดะฐั‚ะตะปัŒัะบะธะน ะดะพะผ ะฐะปั‚ั‹ะฝ ั‚ัƒัƒ ััƒัƒะดะฐ ะฑะฐะปั‹ะบ ะบะตะทะตะผ ะฐัั‚ะฐะณะฐะฝ ะดะฐ ะฑะพะปะทะพ ะบะพั€ัƒะปัƒ ั˜ะตั€ะปะต...`
**Context Size 4:**
1. `ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ 15 ะบำฑะฝะธะฝะต ั˜ะตั‚ะธั€ะต ะฑะพะปะณะพะฝ ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ 15 ะบำฑะฝะธะฝะต ั˜ะตั‚ะธั€ะต ะฑะพะปะณะพะฝ ั˜ั‹ะปะดั‹าฅ ำฑ...`
2. `ะณะพั€ะฝะพ ะฐะปั‚ะฐะนัะบ ะฐัƒ ั€ะฐ ะปะธั‚ะตั€ะฐั‚ัƒั€ะฝะพ ะธะทะดะฐั‚ะตะปัŒัะบะธะน ะดะพะผ ะฐะปั‚ั‹ะฝ ั‚ัƒัƒ ั˜ะฐะนะดั‹าฅ ะฑะพะนั‹ะฝะดะฐ ะฐั€ะบะฐะปะฐั€ั‹ ะบะพะนัƒ ะปะฐ ะฑะธะนะธะบ ำงะปำง...`
3. `ะฑะพะปะณะพะฝ ั˜ั‹ะปะดั‹าฅ ำฑะปำฑั€ะณะตะฝ ะฐะนั‹ะฝั‹าฅ 15 ะบำฑะฝะธะฝะตาฅ ะฐะปะฐ ะบำฑำฑะบ ะฐะนะดั‹าฅ 6 ะบำฑะฝะธ ะณั€ะธะณะพั€ะธะฐะฝ ะบำฑะฝั‚ะธะทำฑะดะต ั˜ั‹ะปะดั‹าฅ 360 ะบำฑะฝะธ ะฒะธ...`
### Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
**Context Size 1:**
1. `_ะณะฐั‚ำฑะปะธยป)_ั˜ะตะบั‚ะธั‡`
2. `ะฐะบะฐะฝะฐะผะธะบะตั‚_ั˜ั‹ั…ะธั…`
3. `ั€ั‚ะฐะบะบะปะฐะฝ_ะพะฝะปะฐ_ะฑัŒ`
**Context Size 2:**
1. `_ะบั‹ะป,_ะฑะฐัะฝะพะฒ_ะบั‹ะปะณ`
2. `,_29_21,97_ะผะฐะปั‚ะฐะป`
3. `_ั˜ัƒั€ั‚ะธั€ะตัะฟัƒะฑะปะธะบ_ะฐ`
**Context Size 3:**
1. `ั‹าฅ_ะบะพะดะพะฝะดะพ_ะธะฝั„ั€ะฐะฝั`
2. `ะดะฐ_ะฟั€ะฐะฒะพัะปะฐะฒ_ะฑะฐัˆะบะฐ`
3. `_โ€”_titus_liefs_asb`
**Context Size 4:**
1. `ะฝั‹าฅ_ะบะฐะฝะดั‹ั€ะฐ_ะฐะณั‹ะฟ_ะฑะฐ`
2. `ะดั‹าฅ_ั„ะธะทะธะบะฐะฝั‹าฅ_ำฑำฑั€ะตะป`
3. `_ะบำฑะฝั‚ะธะทำฑะปะต_ะบำฑะฝะธ_ะณั€ะธ`
### Key Findings
- **Best Predictability:** Context-4 (word) with 97.3% predictability
- **Branching Factor:** Decreases with context size (more deterministic)
- **Memory Trade-off:** Larger contexts require more storage (161,528 contexts)
- **Recommendation:** Context-3 or Context-4 for text generation
---
## 4. Vocabulary Analysis
![Zipf's Law](visualizations/zipf_law.png)
![Top Words](visualizations/top20_words.png)
![Coverage Curve](visualizations/vocab_coverage.png)
### Statistics
| Metric | Value |
|--------|-------|
| Vocabulary Size | 26,328 |
| Total Tokens | 565,164 |
| Mean Frequency | 21.47 |
| Median Frequency | 3 |
| Frequency Std Dev | 124.45 |
### Most Common Words
| Rank | Word | Frequency |
|------|------|-----------|
| 1 | ะปะฐ | 6,601 |
| 2 | ะปะต | 4,964 |
| 3 | ะฐะปั‚ะฐะน | 4,646 |
| 4 | ะดะตะฟ | 3,903 |
| 5 | ั | 3,881 |
| 6 | ั˜ั‹ะปะดะฐ | 3,745 |
| 7 | ะฐะนะดั‹าฅ | 3,441 |
| 8 | ะฑะพะปะณะพะฝ | 3,230 |
| 9 | ะบะผ | 3,151 |
| 10 | ั˜ัƒั€ั‚ | 3,140 |
### Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|------|------|-----------|
| 1 | ั‚ะฐัะบะฐะดัƒะปะฐั€ะดั‹ | 2 |
| 2 | ั‚ัƒัƒะทะฐะปะฐะฝะฐั‚ | 2 |
| 3 | ัƒะทะฐะฝั‹ัˆ | 2 |
| 4 | ัั€ะตััะตะนะดะต | 2 |
| 5 | ะผะตั‚ะตะผะตั‚ะธะบะต | 2 |
| 6 | ั˜ะตั‚ะบะธะปะดะตั€ะธ | 2 |
| 7 | ะบำงะผะฟำฑั‚ะตั€ะปะธะบ | 2 |
| 8 | ั‡ะพะพั‚ะพัˆ | 2 |
| 9 | ะบะพัˆะปั‹ะบ | 2 |
| 10 | ะฟั€ะพะณั€ะฐะผะฐะปะฐั€ั‹ | 2 |
### Zipf's Law Analysis
| Metric | Value |
|--------|-------|
| Zipf Coefficient | 1.1627 |
| Rยฒ (Goodness of Fit) | 0.985919 |
| Adherence Quality | **excellent** |
### Coverage Analysis
| Top N Words | Coverage |
|-------------|----------|
| Top 100 | 27.1% |
| Top 1,000 | 65.7% |
| Top 5,000 | 85.9% |
| Top 10,000 | 92.4% |
### Key Findings
- **Zipf Compliance:** Rยฒ=0.9859 indicates excellent adherence to Zipf's law
- **High Frequency Dominance:** Top 100 words cover 27.1% of corpus
- **Long Tail:** 16,328 words needed for remaining 7.6% coverage
---
## 5. Word Embeddings Evaluation
![Embedding Isotropy](visualizations/embedding_isotropy.png)
![Similarity Matrix](visualizations/embedding_similarity.png)
![t-SNE Words](visualizations/tsne_words.png)
![t-SNE Sentences](visualizations/tsne_sentences.png)
### 5.1 Cross-Lingual Alignment
![Alignment Quality](visualizations/embedding_alignment_quality.png)
![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
### 5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|-------|-----------|----------|------------------|---------------|----------------|
| **mono_32d** | 32 | 0.8419 | 0.3607 | N/A | N/A |
| **mono_64d** | 64 | 0.7375 | 0.3054 | N/A | N/A |
| **mono_128d** | 128 | 0.3603 | 0.2810 | N/A | N/A |
| **aligned_32d** | 32 | 0.8419 ๐Ÿ† | 0.3554 | 0.0260 | 0.1460 |
| **aligned_64d** | 64 | 0.7375 | 0.2999 | 0.0660 | 0.2980 |
| **aligned_128d** | 128 | 0.3603 | 0.2823 | 0.1580 | 0.4340 |
### Key Findings
- **Best Isotropy:** aligned_32d with 0.8419 (more uniform distribution)
- **Semantic Density:** Average pairwise similarity of 0.3141. Lower values indicate better semantic separation.
- **Alignment Quality:** Aligned models achieve up to 15.8% R@1 in cross-lingual retrieval.
- **Recommendation:** 128d aligned for best cross-lingual performance
---
## 6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
### 6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|--------|-------|----------------|----------------|
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | **0.854** | High formulaic/idiomatic content | - |
### 6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
#### Productive Prefixes
| Prefix | Examples |
|--------|----------|
| `-ะบะฐ` | ะบะฐะปัŒะบัƒั‚ั‚ะฐ, ะบะฐะปะฑะฐ, ะบะฐั†ัƒะบะฐะฒะฐ |
| `-ะบะพ` | ะบะพะฝั‚ั€, ะบะพะทะตั€ั‘ะบะพะฒะฐ, ะบะพะถะพะฝะดะพะฟ |
#### Productive Suffixes
| Suffix | Examples |
|--------|----------|
| `-ั‹าฅ` | ั„ะธะปะฐั€ะผะพะฝะธัะฝั‹าฅ, ั‚ั€ะฐะฝัะฟะพั€ั‚ั‚ั‹าฅ, ะฑั€ะธั‚ะฐะฝะธัะฝั‹าฅ |
| `-ะธะน` | ะฑะตะปะพั€ัƒััะบะธะน, ะผะฐะบะฐั€ัŒะตะฒัะบะธะน, ะธัะตั‚ัะบะธะน |
| `-ะบะธะน` | ะฑะตะปะพั€ัƒััะบะธะน, ะผะฐะบะฐั€ัŒะตะฒัะบะธะน, ะธัะตั‚ัะบะธะน |
| `-ัะบะธะน` | ะฑะตะปะพั€ัƒััะบะธะน, ะผะฐะบะฐั€ัŒะตะฒัะบะธะน, ะธัะตั‚ัะบะธะน |
| `-ะฝั‹าฅ` | ั„ะธะปะฐั€ะผะพะฝะธัะฝั‹าฅ, ะฑั€ะธั‚ะฐะฝะธัะฝั‹าฅ, ะฝะฐั€ะฐะปะบะฐะฝั‹าฅ |
| `-ะธาฅ` | ั˜ะตะตะทะตะทะธะฝะธาฅ, ะธะทำฑะทะธะฝะธาฅ, ำฑั€ะตะฝั‡ะธะบั‚ะตั€ะดะธาฅ |
| `-ะดะฐ` | ะพั€ะดั‹ะฝะดะฐ, ัะพะฒั…ะพะทั‹ะฝะดะฐ, ัะฐะดัƒะดะฐ |
| `-ั‹ะน` | ะณะพััƒะดะฐั€ัั‚ะฒะตะฝะฝั‹ะน, ะผัƒะทะตะนะฝั‹ะน, ั‚ั‘ะฟะปั‹ะน |
### 6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|------|----------|------------------|----------|
| `ัะบะธะน` | 2.17x | 43 contexts | ะพะผัะบะธะน, ะพะบัะบะธะน, ัŽั€ัะบะธะน |
| `ั‹ะฝะดะฐ` | 1.53x | 51 contexts | ะผั‹ะฝะดะฐ, ะฐะนั‹ะฝะดะฐ, ัั‹ะฝะดะฐั€ |
| `ั‹ะฝั‹าฅ` | 1.68x | 30 contexts | ะผั‹ะฝั‹าฅ, ะทั‹ะฝั‹าฅ, ัƒะณั‹ะฝั‹าฅ |
| `ะปั‚ะฐะน` | 1.85x | 21 contexts | ะฐะปั‚ะฐะน, ัˆั‹ะปั‚ะฐะน, ะฐะปั‚ะฐะนะดั‹ |
| `ะปะณะพะฝ` | 2.21x | 12 contexts | ั‚ะพะปะณะพะฝ, ะฑะพะปะณะพะฝ, ะฑะพะปะณะพะฝะผ |
| `ะปะณะฐะฝ` | 1.70x | 23 contexts | ะฐะปะณะฐะฝ, ะบะฐะปะณะฐะฝ, ัะฐะปะณะฐะฝ |
| `ะพััะธ` | 2.03x | 13 contexts | ั€ะพััะธั, ั€ะพััะธัŽ, ั€ะพััะธะธ |
| `ะฐะฝั‹าฅ` | 1.67x | 23 contexts | ะพะบะฐะฝั‹าฅ, ััˆะฐะฝั‹าฅ, ัั€ะฐะฝั‹าฅ |
| `ะพะปะณะพ` | 1.66x | 22 contexts | ะบะพะปะณะพ, ะฒะพะปะณะพ, ะณะพะปะณะพ |
| `ะฐะปั‚ะฐ` | 1.49x | 26 contexts | ะฐะปั‚ะฐะน, ะฐะปั‚ะฐะฝ, ะฐะปั‚ะฐะผ |
| `ั˜ั‹ะปะด` | 1.77x | 15 contexts | ั˜ั‹ะปะดะฐ, ั˜ั‹ะปะดั‹, ั˜ั‹ะปะดั‹ะฝ |
| `ั‹ะปะดะฐ` | 1.63x | 19 contexts | ั‚ั‹ะปะดะฐ, ะดั‹ะปะดะฐ, ั˜ั‹ะปะดะฐ |
### 6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|--------|--------|-----------|----------|
| `-ะบะฐ` | `-ั‹าฅ` | 21 words | ะบะฐะทะฐะบัั‚ะฐะฝะฝั‹าฅ, ะบะฐะนั‹ั€ะปั‹ะบั‚ั‹าฅ |
| `-ะบะพ` | `-ั‹าฅ` | 20 words | ะบะพะฝัั‚ะธั‚ัƒั†ะธัะฝั‹าฅ, ะบะพะฝะบัƒั€ัั‚ะฐั€ะดั‹าฅ |
| `-ะบะฐ` | `-ะธะน` | 14 words | ะบะฐะดะตั‚ัะบะธะน, ะบะฐั€ัะบะธะน |
| `-ะบะพ` | `-ั‹ะน` | 13 words | ะบะพะฝัะฐะปั‚ะธะฝะณะพะฒั‹ะน, ะบะพะผะฐะฝะดะฝั‹ะน |
| `-ะบะฐ` | `-ะฝั‹าฅ` | 11 words | ะบะฐะทะฐะบัั‚ะฐะฝะฝั‹าฅ, ะบะฐะฝะฐะดะฐะฝั‹าฅ |
| `-ะบะพ` | `-ะฝั‹าฅ` | 11 words | ะบะพะฝัั‚ะธั‚ัƒั†ะธัะฝั‹าฅ, ะบะพะปั…ะพะทั‹ะฝั‹าฅ |
| `-ะบะพ` | `-ะธะน` | 10 words | ะบะพะผะผะตะฝั‚ะฐั€ะธะน, ะบะพะฒะฐะปะตะฒัะบะธะน |
| `-ะบะฐ` | `-ะบะธะน` | 10 words | ะบะฐะดะตั‚ัะบะธะน, ะบะฐั€ัะบะธะน |
| `-ะบะฐ` | `-ัะบะธะน` | 10 words | ะบะฐะดะตั‚ัะบะธะน, ะบะฐั€ัะบะธะน |
| `-ะบะพ` | `-ะดะฐ` | 9 words | ะบะพัะผะตั‚ะพะปะพะณะธัะดะฐ, ะบะพั€ัƒะดะฐ |
### 6.5 Recursive Morpheme Segmentation
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
| Word | Suggested Split | Confidence | Stem |
|------|-----------------|------------|------|
| ะฟะปะฐะฝะตั‚ะฐะปะฐั€ั‹ะฝะดะฐ | **`ะฟะปะฐะฝะตั‚ะฐะปะฐั€ั‹ะฝ-ะดะฐ`** | 4.5 | `ะฟะปะฐะฝะตั‚ะฐะปะฐั€ั‹ะฝ` |
| ะฐะบั‚ัƒั€ัƒะฝั‹าฅ | **`ะฐะบั‚ัƒั€ัƒ-ะฝั‹าฅ`** | 4.5 | `ะฐะบั‚ัƒั€ัƒ` |
| ะฟะพะบั€ะพะฒัะบะธะน | **`ะฟะพะบั€ะพะฒ-ัะบะธะน`** | 4.5 | `ะฟะพะบั€ะพะฒ` |
| ะธัะบัƒััั‚ะฒะพะฝั‹าฅ | **`ะธัะบัƒััั‚ะฒะพ-ะฝั‹าฅ`** | 4.5 | `ะธัะบัƒััั‚ะฒะพ` |
| ะดัƒะผะฐะทั‹ะฝั‹าฅ | **`ะดัƒะผะฐะทั‹-ะฝั‹าฅ`** | 4.5 | `ะดัƒะผะฐะทั‹` |
| ะผะตะดะธั†ะธะฝะฐะดะฐ | **`ะผะตะดะธั†ะธะฝะฐ-ะดะฐ`** | 4.5 | `ะผะตะดะธั†ะธะฝะฐ` |
| ะฑะฐะปะดะฐั€ั‹ะฝั‹าฅ | **`ะฑะฐะปะดะฐั€ั‹-ะฝั‹าฅ`** | 4.5 | `ะฑะฐะปะดะฐั€ั‹` |
| ะฟะพั€ั‚ัƒะณะฐะปะธัะดะฐ | **`ะฟะพั€ั‚ัƒะณะฐะปะธั-ะดะฐ`** | 4.5 | `ะฟะพั€ั‚ัƒะณะฐะปะธั` |
| ะฟั€ะพะณั€ะฐะผะผะฐะดะฐ | **`ะฟั€ะพะณั€ะฐะผะผะฐ-ะดะฐ`** | 4.5 | `ะฟั€ะพะณั€ะฐะผะผะฐ` |
| ะฐะนะผะฐะณั‹ะฝั‹าฅ | **`ะฐะนะผะฐะณั‹-ะฝั‹าฅ`** | 4.5 | `ะฐะนะผะฐะณั‹` |
| ะฐะบะฐะดะตะผะธัะดะฐ | **`ะฐะบะฐะดะตะผะธั-ะดะฐ`** | 4.5 | `ะฐะบะฐะดะตะผะธั` |
| ะฐะฒะธะฐั†ะธัะฝั‹าฅ | **`ะฐะฒะธะฐั†ะธั-ะฝั‹าฅ`** | 4.5 | `ะฐะฒะธะฐั†ะธั` |
| ัˆะพั‚ะปะฐะฝะดัะบะธะน | **`ัˆะพั‚ะปะฐะฝะด-ัะบะธะน`** | 4.5 | `ัˆะพั‚ะปะฐะฝะด` |
| ะบะธั€ะณะธะทะธัะฝั‹าฅ | **`ะบะธั€ะณะธะทะธั-ะฝั‹าฅ`** | 4.5 | `ะบะธั€ะณะธะทะธั` |
| ั€ะตะณั€ะตััะธัะฝั‹าฅ | **`ั€ะตะณั€ะตััะธั-ะฝั‹าฅ`** | 4.5 | `ั€ะตะณั€ะตััะธั` |
### 6.6 Linguistic Interpretation
> **Automated Insight:**
The language Southern Altai shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
---
## 7. Summary & Recommendations
![Performance Dashboard](visualizations/performance_dashboard.png)
### Production Recommendations
| Component | Recommended | Rationale |
|-----------|-------------|-----------|
| Tokenizer | **16k BPE** | Best compression (3.69x) |
| N-gram | **2-gram** | Lowest perplexity (413) |
| Markov | **Context-4** | Highest predictability (97.3%) |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
---
## Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
### Tokenizer Metrics
**Compression Ratio**
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
>
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
>
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
**Average Token Length (Fertility)**
> *Definition:* Mean number of characters per token produced by the tokenizer.
>
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
>
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
**Unknown Token Rate (OOV Rate)**
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
>
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
>
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
### N-gram Model Metrics
**Perplexity**
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
>
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
>
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
**Entropy**
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
>
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
>
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
**Coverage (Top-K)**
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
>
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
>
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
### Markov Chain Metrics
**Average Entropy**
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
>
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
>
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
**Branching Factor**
> *Definition:* Average number of unique next tokens observed for each context.
>
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
>
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
**Predictability**
> *Definition:* Derived metric: (1 - normalized_entropy) ร— 100%. Indicates how deterministic the model's predictions are.
>
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
>
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
### Vocabulary & Zipf's Law Metrics
**Zipf's Coefficient**
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
>
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
>
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
**Rยฒ (Coefficient of Determination)**
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
>
> *Intuition:* Rยฒ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
>
> *What to seek:* Rยฒ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
**Vocabulary Coverage**
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
>
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
>
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
### Word Embedding Metrics
**Isotropy**
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
>
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
>
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
**Average Norm**
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
>
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
>
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
**Cosine Similarity**
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
>
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
>
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
**t-SNE Visualization**
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
>
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
>
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
### General Interpretation Guidelines
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
### Visualizations Index
| Visualization | Description |
|---------------|-------------|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
---
## About This Project
### Data Source
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
### Project
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
### Maintainer
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
### Citation
If you use these models in your research, please cite:
```bibtex
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
```
### License
MIT License - Free for academic and commercial use.
### Links
- ๐ŸŒ Website: [wikilangs.org](https://wikilangs.org)
- ๐Ÿค— Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
- ๐Ÿ“Š Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
- ๐Ÿ‘ค Author: [Omar Kamali](https://huggingface.co/omarkamali)
- ๐Ÿค Sponsor: [Featherless AI](https://featherless.ai)
---
*Generated by Wikilangs Models Pipeline*
*Report Date: 2026-01-03 16:17:03*